期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于深度全连接网络Himawari-8卫星气溶胶反演研究 被引量:2
1
作者 宁海涛 江鹏 吴艳兰 《环境监测管理与技术》 CSCD 2021年第1期8-12,共5页
利用葵花8(Himawari-8,H8)16个波段数据、卫星、太阳角度数据和深度学习技术,提出一种基于深度全连接网络(Deep Neural Networks,DNN)模型的AOD遥感反演方法(Himawari-DNN)。该方法直接建立H8影像本身与AERONET站点AOD数据间的关系,可... 利用葵花8(Himawari-8,H8)16个波段数据、卫星、太阳角度数据和深度学习技术,提出一种基于深度全连接网络(Deep Neural Networks,DNN)模型的AOD遥感反演方法(Himawari-DNN)。该方法直接建立H8影像本身与AERONET站点AOD数据间的关系,可避免传统AOD遥感反演方法中复杂过程,得到精度较高的反演结果。通过有效数据对所构建的模型做精度测试,同时将反演结果和实测数据对比分析,结果表明,模型反演结果与研究区内所有站点的观测值均具有较高的一致性(R^2均>0.89)。可见,应用DNN对H8气象静止卫星开展AOD反演具有一定的可行性。 展开更多
关键词 气溶胶光学厚度 深度全连接网络 葵花8 遥感
在线阅读 下载PDF
基于OOD泛化性验证和深度全连接神经网络的泥石流易发性评价方法 被引量:3
2
作者 郭鹏宁 邢会歌 +2 位作者 李从江 吴雨鑫 李海波 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第4期182-193,共12页
提升易发性评价精度有助于山区泥石流灾害早期的识别和监测预警。大部分机器学习模型在训练、测试集合上表现良好,但实际应用过程精度较差,不利于工程选址规划和防灾减灾,如何提高机器学习模型评价精度与泛化性具有重要意义。选取深度... 提升易发性评价精度有助于山区泥石流灾害早期的识别和监测预警。大部分机器学习模型在训练、测试集合上表现良好,但实际应用过程精度较差,不利于工程选址规划和防灾减灾,如何提高机器学习模型评价精度与泛化性具有重要意义。选取深度全连接神经网络,与梯度提升树、随机森林模型和贝叶斯网络等机器学习方法共同进行模型精确性评价和OOD(out-of-distribution)泛化性验证,从而找出在训练、预测和应用中均具有较高精度的方法。以四川省雅安市为例,采用小流域单元进行区域网格划分,将数据集合按7∶3比例随机分为训练集和测试集,使用经验法则(3-sigma)剔除异常数据,并基于多变量(Iterative Imputer)和K-近邻法对缺失值填充进行泥石流灾害易发性评价。在泥石流易发性因子的共线性、敏感性和预测能力的分析结果基础上,选定14个易发性因子构建模型评价指标体系,进行泥石流易发性评价与对比。通过对模型的精确性评价及OOD泛化性验证发现:深度全连接神经网络模型曲线下的面积(AUC)、准确率(Acc)、召回率(Recall)的值比梯度提升树等的计算结果分别超出了0.027、0.02、0.02,而平均绝对值误差(MAE)降低了0.003;OOD泛化性验证准确度超出了0.056。研究表明,深度全连接神经网络对于泥石流易发性评价的预测效果较好,能够提高泥石流评价的精度,增加评价的适应性,可为泥石流易发性评价提供新思路。 展开更多
关键词 泥石流灾害 易发性评价 深度学习算法 OOD泛化性验证 深度连接神经网络
在线阅读 下载PDF
基于深度全连接神经网络的储层有效砂体厚度预测 被引量:4
3
作者 贺婷 周宁 吴啸宇 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2023年第4期1262-1274,共13页
河道砂是重要的油气储集体之一,实现砂体厚度的定量预测是提高油气开发效率的关键。随着目标储层非匀质性的增强,地震属性与储层岩性、物性、孔隙流体之间的关系更趋复杂。如何在地质信息有限的情况下实现高效且智能的复杂储层定量预测... 河道砂是重要的油气储集体之一,实现砂体厚度的定量预测是提高油气开发效率的关键。随着目标储层非匀质性的增强,地震属性与储层岩性、物性、孔隙流体之间的关系更趋复杂。如何在地质信息有限的情况下实现高效且智能的复杂储层定量预测是目前储层预测领域的热点和难点。为了实现对致密砂岩储层的高精度智能化预测,本文提出基于深度全连接神经网络的储层有效砂体厚度预测方法。该方法通过构建多层堆叠的全连接神经网络逐层优化针对储层有效砂体厚度预测的地震属性,并将优化后的属性直接映射为砂体厚度。首先针对模型数据分析了训练样本对全连接神经网络建模的影响,然后在小样本情况下分别对比了该网络的深、浅层形态在网络规模大于训练样本数目及网络规模小于训练样本数目时的表现差异,发现当训练样本为小样本时,深层网络表现优于浅层网络,前提是训练样本数目大于网络规模。最后,我们将深度全连接神经网络用于胜利油田某区实际数据的有效砂体厚度预测,应用效果显示该方法对致密砂岩储层中4 m左右的砂体实现了有效识别,体现了该端到端智能建模方法从地震属性中挖掘潜藏地质信息的能力,证实了其在储层定量预测中的有效性。 展开更多
关键词 深度连接神经网络 致密砂岩 储层参数 地震属性 有效砂体厚度 小样本
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部