期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
基于一维卷积神经网络的雷达个体识别算法 被引量:1
1
作者 杨孟璋 农丽萍 +1 位作者 李然 王俊义 《计算机工程与设计》 北大核心 2025年第5期1281-1288,共8页
为解决利用长序列雷达信号对雷达辐射源个体进行分类识别的问题,提出一种融合注意力机制和残差的一维卷积深度神经网络(1CDNN)模型,利用一维卷积从原始长序列雷达信号中直接提取特征,减少模型的参数量。引入注意力机制帮助模型学习利用... 为解决利用长序列雷达信号对雷达辐射源个体进行分类识别的问题,提出一种融合注意力机制和残差的一维卷积深度神经网络(1CDNN)模型,利用一维卷积从原始长序列雷达信号中直接提取特征,减少模型的参数量。引入注意力机制帮助模型学习利用全局信息选择关键特征,提高模型的分类识别精度。引入残差使得模型在缓解梯度消失的同时更容易进行优化和训练。实验结果表明,所提模型在实际采集数据集上具有结构简单、训练难度低、分类识别精度高和收敛速度快的优点。 展开更多
关键词 雷达辐射源识别 序列雷达信号 深度学习 端到端 一维卷积神经网络 注意力机制 残差学习
在线阅读 下载PDF
基于全卷积神经网络多任务学习的时域语音分离 被引量:1
2
作者 孙林慧 王春艳 张蒙 《信号处理》 CSCD 北大核心 2024年第12期2228-2237,共10页
基于深度神经网络时频掩码进行语音分离时,目标信号相位一般采用混合信号的相位谱,且对性别组合缺乏针对性处理,这导致分离语音的质量不佳。针对该问题,本文提出一种基于全卷积神经网络联合性别组合检测(Fully Convolutional Neural Net... 基于深度神经网络时频掩码进行语音分离时,目标信号相位一般采用混合信号的相位谱,且对性别组合缺乏针对性处理,这导致分离语音的质量不佳。针对该问题,本文提出一种基于全卷积神经网络联合性别组合检测(Fully Convolutional Neural Network-Gender Combination Detection,FCN-GCD)多任务学习的时域语音分离方法。该方法首先在语音分离支路构建全卷积神经网络,该网络的输入为时域两人混合语音信号,输出为目标讲话者的纯净语音信号,运用卷积编码器和反卷积解码器对特征进行压缩和重建,实现端到端的语音分离。其次将混合语音性别组合检测任务整合到语音分离网络中,在两个任务联合约束下获取辅助信息特征和语音分离特征,并将这些深度特征相结合来提升语音分离质量。该FCN-GCD方法是一种时域语音分离方法,不需要进行相位恢复和频域到时域的重构,相比频域处理方法,该处理过程简单,从而提高了运算效率。另外,该方法从混合语音性别组合检测任务中提取有效的辅助信息特征,利用联合特征实现了更有效的语音分离。实验结果表明,与单任务的语音分离方法相比,本文所提出的FCN-GCD方法在男男、女女和男女三种性别组合下均有效提高了语音质量,在语音质量感知评估(Perceptual Evaluation of Speech Quality,PESQ)、短时客观可懂度(Short-Time Objective Intelligibility,STOI)、信号干扰比(Signalto-Interference Ratio,SIR)、信号失真比(Signal-to-Distortion Ratio,SDR)和信号伪像比(Signal-to-Artifact Ratio,SAR)评价指标上均获得更佳的表现。 展开更多
关键词 深度神经网络 语音分离 卷积神经网络 特征融合 多任务学习
在线阅读 下载PDF
一种基于全卷积神经网络的空中目标战术意图识别模型 被引量:3
3
作者 李乐民 宋亚飞 +1 位作者 王鹏 王科 《空军工程大学学报》 CSCD 北大核心 2024年第5期98-106,共9页
针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战... 针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战意图数据的时序特征。通过消融实验和对比实验结果表明,MLSTM-FCN模型在意图识别准确率、反应速度和抗干扰能力方面明显优于现有的空中目标意图识别模型,取得了sota的结果,为指挥员在进行空中作战决策时提供更有效的依据。 展开更多
关键词 意图识别 空中目标 深度学习 卷积网络 长短记忆神经网络 压缩与激励模块
在线阅读 下载PDF
基于深度全卷积神经网络的大田稻穗分割 被引量:43
4
作者 段凌凤 熊雄 +2 位作者 刘谦 杨万能 黄成龙 《农业工程学报》 EI CAS CSCD 北大核心 2018年第12期202-209,共8页
稻穗的准确分割是获取水稻穗部性状、实现水稻表型自动化测量的关键。该研究应用水稻图像数据集及数据增广技术,离线训练了用于稻穗分割的3个分别基于Seg Net,Deep LAB和PSPNet的全卷积神经网络。综合考虑分割性能和计算速度,优选了基于... 稻穗的准确分割是获取水稻穗部性状、实现水稻表型自动化测量的关键。该研究应用水稻图像数据集及数据增广技术,离线训练了用于稻穗分割的3个分别基于Seg Net,Deep LAB和PSPNet的全卷积神经网络。综合考虑分割性能和计算速度,优选了基于Seg Net的网络,称为Panicle Net。在线分割阶段先将原始图像划分为子图,由Panicle Net分割子图,再拼接子图得到分割结果。比较该算法及现有作物果穗分割算法Panicle-SEG、HSeg、i2滞后阈值法及joint Seg,该算法对与训练样本同年度拍摄样本Qseg值0.76、F值0.86,不同年度样本Qseg值0.67、F值0.80,远优于次优的Panicle-SEG算法,且计算速度约为Panicle-SEG算法的35倍。该算法能克服稻穗边缘严重不规则、不同品种及生育期稻穗外观差异大、穂叶颜色混叠和复杂大田环境中光照、遮挡等因素的干扰,提升稻穗分割准确度及效率,进而服务于水稻育种栽培。 展开更多
关键词 作物 图像分割 大田水稻 稻穗分割 深度学习 卷积神经网络
在线阅读 下载PDF
卷积神经网络方法在岛礁类海啸波水动力特性演变的应用 被引量:1
5
作者 高榕泽 屈科 +1 位作者 任兴月 王旭 《热带海洋学报》 CAS CSCD 北大核心 2024年第4期68-75,共8页
海啸是严重的海洋灾害,准确的海啸预测对于海洋工程和人民生命财产安全具有重要意义。本文以一维卷积神经网络(1-dimensional convolutional neural network,CONV1D)为基础,构建岛礁地形的类海啸波水动力特性演变模型。通过输入类海啸... 海啸是严重的海洋灾害,准确的海啸预测对于海洋工程和人民生命财产安全具有重要意义。本文以一维卷积神经网络(1-dimensional convolutional neural network,CONV1D)为基础,构建岛礁地形的类海啸波水动力特性演变模型。通过输入类海啸波波高时程曲线的观测值,得到岛礁指定地点的水位淹没时程曲线,实现时间序列到时间序列的预测,进行海洋灾害的实时预报,提前布置防御措施以达到减小损失的目的。结果显示,预测一组样本所需时间少于一秒,相对于传统的地震海啸预警系统,深度学习方法所需计算资源较少,计算速度更快。对类海啸波到达时间预测的平均相对误差为0.71%,最大水位高度预测的平均相对误差为6.99%, CONV1D得到的岛礁地形类海啸波水动力特性与数值结果吻合较好。 展开更多
关键词 深度学习 卷积神经网络 海啸预测 水动力特性 时间序列
在线阅读 下载PDF
基于深度全卷积神经弹性网络WCGAN-GP模型的语音增强研究 被引量:2
6
作者 许雯婷 龚晓峰 《计算机应用与软件》 北大核心 2024年第2期130-137,共8页
Wasserstein距离生成对抗网络(Wasserstein Generative Adversal Network,WGAN)模型^([1])在语音增强中运用广泛,但存在梯度易爆炸、性能不稳定等问题。引入梯度惩罚(Gradient Penalty,GP)和弹性网络条件约束,并将生成器和判别器优化成... Wasserstein距离生成对抗网络(Wasserstein Generative Adversal Network,WGAN)模型^([1])在语音增强中运用广泛,但存在梯度易爆炸、性能不稳定等问题。引入梯度惩罚(Gradient Penalty,GP)和弹性网络条件约束,并将生成器和判别器优化成深度全卷积神经网络(Deep Fully Convolutional Neural Networks,DFCNN)结构,提出一种基于DFCNN的弹性网络条件梯度惩罚(Wasserstein Conditional Generative Adversal Network Gradient Penalty,WCGAN-GP)模型。改进后的模型可以达到真实Lipschitz限制条件,提高了可控性、稳定性和特征提取能力,能更快优化训练。实验将改进后的模型与WGAN对不同噪声条件下的语音进行增强,结果证实了改进后的模型在语音增强方面的优越性。 展开更多
关键词 Wasserstein距离 深度卷积神经网络 梯度惩罚 弹性网络 条件约束
在线阅读 下载PDF
基于全卷积神经网络的肝脏CT影像分割研究 被引量:25
7
作者 郭树旭 马树志 +6 位作者 李晶 张惠茅 孙长建 金兰依 刘晓鸣 刘奇楠 李雪妍 《计算机工程与应用》 CSCD 北大核心 2017年第18期126-131,共6页
针对腹部CT影像邻近器官对比度较低及因个体肝脏形状差异较大等引起肝脏分割困难的问题,提出了全卷积神经网络肝脏分割模型。首先通过卷积神经网络提取图像深层、抽象的特征,再通过反卷积运算对提取到的特征映射进行插值重构后得到分割... 针对腹部CT影像邻近器官对比度较低及因个体肝脏形状差异较大等引起肝脏分割困难的问题,提出了全卷积神经网络肝脏分割模型。首先通过卷积神经网络提取图像深层、抽象的特征,再通过反卷积运算对提取到的特征映射进行插值重构后得到分割结果。由于单纯进行反卷积得到的分割结果往往比较粗糙,因此,在反卷积之前,先融合高层与低层的特征,并且通过增加反卷积的层数、减少反卷积步长,得到了更为精确的分割结果。与传统卷积神经网络的分割方法相比,该模型可以充分利用CT影像的空间信息。实验数据表明该模型能够使腹部CT影像肝脏分割具有较高的精度。 展开更多
关键词 深度学习 卷积神经网络 医学图像分割
在线阅读 下载PDF
基于多列深度3D卷积神经网络的手势识别 被引量:22
8
作者 易生 梁华刚 茹锋 《计算机工程》 CAS CSCD 北大核心 2017年第8期243-248,共6页
传统2D卷积神经网络对于视频连续帧图像的特征提取容易丢失目标时间轴上的运动信息,导致识别准确度较低。为此,提出一种基于多列深度3D卷积神经网络(3D CNN)的手势识别方法。采用3D卷积核对连续帧图像进行卷积操作,提取目标的时间和空... 传统2D卷积神经网络对于视频连续帧图像的特征提取容易丢失目标时间轴上的运动信息,导致识别准确度较低。为此,提出一种基于多列深度3D卷积神经网络(3D CNN)的手势识别方法。采用3D卷积核对连续帧图像进行卷积操作,提取目标的时间和空间特征捕捉运动信息。为避免因单组3D CNN特征提取不充分而导致的误分类,训练多组具有较强分类能力的3D CNN结构组成多列深度3D CNN,该结构通过对多组3D CNN的输出结果进行权衡,将权重最大的类别判定为最终的输出结果。实验结果表明,将多列深度3D CNN应用于CHGDs数据集上进行手势识别,识别率达到95.09%,与单组3D CNN及传统2D CNN相比分别提高近7%,20%,对连续图像目标识别具有较好的识别能力。 展开更多
关键词 视频图像序列处理 手势识别 深度学习 特征提取 卷积神经网络 运动目标识别
在线阅读 下载PDF
全卷积多并联残差神经网络 被引量:6
9
作者 李国强 张露 《小型微型计算机系统》 CSCD 北大核心 2020年第1期30-34,共5页
随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题... 随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题,本文提出了一种改进的残差神经网络,称为全卷积多并联残差神经网络.在该网络中,每一层的特征信息不仅传输到下一层还输出到最后的平均池化层.为了测试该网络的性能,分别在三个数据集(MNIST,CIFAR-10和CIFAR-100)上对比图像分类的结果.实验结果表明,改进后的全卷积多并联残差神经网络与残差网络相比具有更高的分类准确率和更好的泛化能力. 展开更多
关键词 深度学习 残差神经网络 卷积多并联残差神经网络 图像分类
在线阅读 下载PDF
基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型
10
作者 雷天亮 吉立新 +2 位作者 王庚润 刘树新 巫岚 《电子学报》 EI CAS CSCD 北大核心 2024年第11期3741-3750,共10页
用户轨迹识别作为一项重要的时空数据挖掘任务,广泛应用于基于位置的个性化服务推荐、行程规划、犯罪行为检测和目标跟踪等领域,但依然面临预测精度不高的问题,主要原因是轨迹数据低采样且稀疏、轨迹类别数量巨大等.针对上述问题提出了... 用户轨迹识别作为一项重要的时空数据挖掘任务,广泛应用于基于位置的个性化服务推荐、行程规划、犯罪行为检测和目标跟踪等领域,但依然面临预测精度不高的问题,主要原因是轨迹数据低采样且稀疏、轨迹类别数量巨大等.针对上述问题提出了基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型(Expandable Self-Attention Spatio-Temporal Graph Convolutional Neural Networks,ESAST-GCNN),该模型采用时空图卷积神经网络方式,深度挖掘时序特征与空间特征关系,并进行预测与拓展,结合自注意力机制获取用户轨迹特征向量内部相关性,最终根据该特征向量进行用户轨迹身份识别.在两个真实数据集上进行测试后发现,ESAST-GCNN相较于TULER-GRU(TUL via Embedding and RNN)在Geolife与Gowalla中准确率分别提高了13.95%、10.63%,实验结果表明ESAST-GCNN优于其他模型,识别效果更好,适用范围更广. 展开更多
关键词 用户轨迹识别 时空图卷积神经网络 自注意力机制 深度学习 时空序列
在线阅读 下载PDF
深层2D反卷积神经网络的序列推荐算法
11
作者 李昆仑 孙瑞刚 王珺 《小型微型计算机系统》 CSCD 北大核心 2022年第11期2328-2335,共8页
序列推荐是推荐算法体系中重要的内容之一.尽管传统的序列推荐算法已经取得了较好的效果,但是传统序列推荐算法容易受到用户行为序列的单向链式结构约束,一旦序列中出现突发性购买项目则会影响整体的推荐效果.本文基于深层2D反卷积神经... 序列推荐是推荐算法体系中重要的内容之一.尽管传统的序列推荐算法已经取得了较好的效果,但是传统序列推荐算法容易受到用户行为序列的单向链式结构约束,一旦序列中出现突发性购买项目则会影响整体的推荐效果.本文基于深层2D反卷积神经网络通过成对编码放松了对序列单链的约束,跳过部分不合理项目,并通过反卷积神经网络扩充、提取序列信息.随后将多层神经网络相加,充分利用用户和项目的信息并加入丢弃层,避免出现过拟合现象.在训练过程中对损失函数进行了改进,增加权重系数,使训练时更容易找到神经网络损失函数的最小值,获得更好的推荐效果.在MovieLens和Gowalla数据集中的实验结果表明,本文所提出的算法可有效的提高神经网络对序列信息的处理能力,提高推荐的准确性. 展开更多
关键词 推荐系统 深度学习 序列信息 卷积神经网络
在线阅读 下载PDF
基于多尺度局部与全局特征提取的时间序列预测网络
12
作者 王静 王济昂 +1 位作者 丁建立 李永华 《计算机工程与设计》 北大核心 2025年第6期1734-1741,共8页
为有效提取序列数据中的局部与全局变化,并对多尺度特征进行建模,提高时间序列预测准确率,提出一种基于多尺度局部与全局特征提取的时间序列预测网络。多尺度特征捕获模块使用多个不同大小的卷积提取序列中多周期的特征;关注对周期性序... 为有效提取序列数据中的局部与全局变化,并对多尺度特征进行建模,提高时间序列预测准确率,提出一种基于多尺度局部与全局特征提取的时间序列预测网络。多尺度特征捕获模块使用多个不同大小的卷积提取序列中多周期的特征;关注对周期性序列的建模,利用多尺度时序分离模块,使用平均池化分离得到时间序列的周期性和趋势性部分;局部与全局特征模块对序列中的局部变化和全局趋势进行建模。实验结果表明,所提算法在4个数据集上的预测效果均优于相关基线算法。 展开更多
关键词 多维时间序列预测 局部与局特征 多尺度 卷积神经网络 时序分解 特征提取 深度学习
在线阅读 下载PDF
全卷积神经网络与全连接条件随机场中的左心室射血分数精准计算 被引量:4
13
作者 刘晓鸣 雷震 +4 位作者 何刊 张惠茅 郭树旭 张歆东 李雪妍 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第3期431-438,共8页
左心室射血分数是临床上用于衡量心脏健康的一项重要指标.为提高左心室分割和射血分数计算的精度,提出一种基于改进的全卷积神经网络和全连接条件随机场的方法.首先利用预训练的全卷积神经网络模型对心脏核磁共振影像进行左心室分割并... 左心室射血分数是临床上用于衡量心脏健康的一项重要指标.为提高左心室分割和射血分数计算的精度,提出一种基于改进的全卷积神经网络和全连接条件随机场的方法.首先利用预训练的全卷积神经网络模型对心脏核磁共振影像进行左心室分割并输出概率图;之后采用3D全连接条件随机场对概率图进行后处理,完成像素级的精准密度预测;最后对左心室分割结果进行3D重建,并计算左心室舒张末期容积和收缩末期容积,进而计算出射血分数.实验结果表明,该方法能够实现左心室射血分数的精确且高效的计算,对左心室射血分数的平均预测误差为4.67%,各步骤耗时短. 展开更多
关键词 左心室射血分数计算 深度学习 卷积神经网络 连接条件随机场
在线阅读 下载PDF
基于全卷积神经网络的植物叶片分割算法 被引量:4
14
作者 胡静 陈志泊 +2 位作者 杨猛 张荣国 崔亚稷 《北京林业大学学报》 CAS CSCD 北大核心 2018年第11期131-136,共6页
【目的】植物叶片分割旨在从背景中分割出叶片区域,去除背景对象干扰。这对植物病害识别和物种鉴定具有重大意义。【方法】本文设计了基于全卷积神经网络的植物叶片分割算法。首先,目标函数用对数逻辑函数代替复杂的Softmax多类预测函数... 【目的】植物叶片分割旨在从背景中分割出叶片区域,去除背景对象干扰。这对植物病害识别和物种鉴定具有重大意义。【方法】本文设计了基于全卷积神经网络的植物叶片分割算法。首先,目标函数用对数逻辑函数代替复杂的Softmax多类预测函数,从而将分割任务转化为适合于植物叶片分割的二分类问题;其次,把批归一化技术引入全卷积神经网络,从而改善网络整体的收敛性。最后,针对当前植物叶片分割研究中缺乏评估指标的状况,设计了新的评估协议——受试者工作特征曲线,该曲线反映了不同阈值情况下植物叶片图像分割的召回率与误报率之间的变化情况。【结果】本文提出的算法降低了全卷积神经网络的参数复杂度,改善了网络的收敛性。实验结果表明,该方法比Leafsnap提到的基于颜色的分割方法更完整地分割了植物叶片区域;提出的ROC曲线能够充分评估植物叶片的分割性能。【结论】与传统方法相比,基于深度学习的植物叶片分割方法实现了输入图像的端对端处理,无需图像转换、噪声滤波和形态运算等预处理技术,因此在植物叶片分割上具有可行性。 展开更多
关键词 深度学习 卷积神经网络 植物叶片分割
在线阅读 下载PDF
全卷积神经网络遥感影像道路提取方法 被引量:29
15
作者 刘笑 王光辉 +2 位作者 杨化超 刘宇 王耀 《遥感信息》 CSCD 北大核心 2018年第1期69-75,共7页
针对人工选取简单特征提取道路效果不理想以及深度神经网络隐藏层信息应用较少的现状,提出一种基于全卷积神经网络的遥感影像道路提取方法。采用初始区域获取、中心线提取、中心线校正的工作流程对资源三号影像进行道路提取。首先自动... 针对人工选取简单特征提取道路效果不理想以及深度神经网络隐藏层信息应用较少的现状,提出一种基于全卷积神经网络的遥感影像道路提取方法。采用初始区域获取、中心线提取、中心线校正的工作流程对资源三号影像进行道路提取。首先自动标注训练样本,完成全卷积神经网络训练,借助卷积层等隐藏层提取的复杂特征获取道路区域;然后依据道路长宽比、形态学运算和格拉斯-普克(Douglas-Peucker,DP)算法完成干扰图斑滤除和断裂区域连接等工作;最后使用Zhang-Suen算法提取中心线,并利用网络首层卷积结果进行中心线校正。实验结果表明,该方法能借助自主学习的特征和网络隐藏层信息实现道路较好提取,不同实验区域中平均准确度在90%以上。 展开更多
关键词 道路提取 高分辨率遥感影像 深度学习 卷积神经网络 边缘检测
在线阅读 下载PDF
基于改进全卷积神经网络的高分遥感影像不透水面提取制图 被引量:8
16
作者 庞博 黄祚继 +1 位作者 吴艳兰 陆雨婷 《遥感信息》 CSCD 北大核心 2020年第4期47-55,共9页
针对现阶段高分辨率遥感影像提取城市不透水面的方法普遍精度不高的现状,以国产高分二号(GF-2)遥感影像为数据源,基于局部注意力机制的密集连接全卷积神经网络模型,以天津市遥感影像为例,构建不透水面样本库及训练不透水面提取模型,用... 针对现阶段高分辨率遥感影像提取城市不透水面的方法普遍精度不高的现状,以国产高分二号(GF-2)遥感影像为数据源,基于局部注意力机制的密集连接全卷积神经网络模型,以天津市遥感影像为例,构建不透水面样本库及训练不透水面提取模型,用测试影像进行测试并采用多种精度评价方法与传统的不透水面提取算法相对比。结果表明,本文方法在遥感不透水面提取方面具有更好的完整性,其像元精度(PA)、均交并比(MIoU)、综合评价指标F 1和Kappa系数分别为0.8832、0.7364、0.8482和0.7533,均高于决策树分类算法、支持向量机法、随机森林算法。此外,本文方法具有较好的泛化性,在遥感影像不透水面提取上具有较强的应用价值。 展开更多
关键词 高分二号 深度学习 卷积神经网络 不透水面提取 泛化性
在线阅读 下载PDF
基于全卷积神经网络的SAR海面溢油图像分割方法 被引量:4
17
作者 魏帼 郭浩 +1 位作者 安居白 刘欢 《计算机应用》 CSCD 北大核心 2019年第A01期182-186,共5页
针对合成孔径雷达(SAR)图像中普遍存在斑点噪声和强度不均匀等问题,提出一种基于全卷积神经网络语义分割框架(FCN)的SAR图像溢油分割方法。首先该方法采用迁移学习来提高泛化能力,从而有效地抑制了溢油区域普遍存在的斑噪声和强度不均... 针对合成孔径雷达(SAR)图像中普遍存在斑点噪声和强度不均匀等问题,提出一种基于全卷积神经网络语义分割框架(FCN)的SAR图像溢油分割方法。首先该方法采用迁移学习来提高泛化能力,从而有效地抑制了溢油区域普遍存在的斑噪声和强度不均匀现象;然后采用跳跃式架构来提高溢油区域的分割精度;最后基于一个包含4200个样本的溢油数据集,将该方法与一些传统机器学习算法(如支持向量机(SVM)、随机森林(RF)和分类回归树(CART)等)和BP神经网络进行对比实验。实验结果表明,该方法相对其他传统方法在像素精度方面提升了7%,针对SAR图像中存在的斑点噪声、强度不均匀及弱边界现象的暗斑分割效果具有显著的改善。 展开更多
关键词 图像分割 深度学习 合成孔径雷达 溢油 卷积神经网络
在线阅读 下载PDF
融合全卷积神经网络和视觉显著性的红外小目标检测 被引量:21
18
作者 刘俊明 孟卫华 《光子学报》 EI CAS CSCD 北大核心 2020年第7期40-50,共11页
为提高复杂背景和噪声干扰下红外小目标检测性能,提出了融合深度神经网络和视觉目标显著性的单阶段红外小目标检测算法.首先设计了基于编码器-解码器架构的轻量级全卷积神经网络对红外图像进行分割,实现背景抑制和目标增强;然后利用红... 为提高复杂背景和噪声干扰下红外小目标检测性能,提出了融合深度神经网络和视觉目标显著性的单阶段红外小目标检测算法.首先设计了基于编码器-解码器架构的轻量级全卷积神经网络对红外图像进行分割,实现背景抑制和目标增强;然后利用红外小目标的显著性特征进一步抑制虚警;最后采用自适应阈值法分离出小目标.网络结构中通过引入多个下采样层降低计算量并增大感受野;通过引入多尺度特征提升背景抑制能力;通过引入注意力机制提升模型训练效果.在真实红外图像上的测试表明,本文算法在检测率、虚警率和运算时间等方面都优于典型红外小目标检测算法,适合进行复杂背景下的红外小目标检测. 展开更多
关键词 深度学习 目标检测 红外 卷积神经网络 多尺度特征 显著性 小目标
在线阅读 下载PDF
基于深度卷积神经网络的无序蛋白质功能模体的识别 被引量:1
19
作者 方春 田爱奎 +2 位作者 孙福振 李彩虹 朱大铭 《济南大学学报(自然科学版)》 CAS 北大核心 2018年第4期280-285,共6页
针对目前实验方法识别天然无序蛋白质中的功能模体耗时费力、难度大,而传统计算机辅助识别方法过于依赖人工挑选特征且准确度低等问题,提出一种利用深度卷积神经网络预测功能模体位置的方法;该方法直接将蛋白质序列作为输入,通过计算对... 针对目前实验方法识别天然无序蛋白质中的功能模体耗时费力、难度大,而传统计算机辅助识别方法过于依赖人工挑选特征且准确度低等问题,提出一种利用深度卷积神经网络预测功能模体位置的方法;该方法直接将蛋白质序列作为输入,通过计算对应的位置特异性打分矩阵和3组氨基酸指数特征,将序列映射到数值矩阵中,模型自行抽取特征并自动识别功能模体的隐性序列模式来进行预测。结果表明:当使用相同数据集进行训练和测试时,本文中提出的方法的性能明显优于其他传统的识别算法,在验证集上的感受性曲线下的面积(AUC)值达到0.708,在测试集上的AUC值达到0.760,说明深度卷积神经网络能够有效地识别功能模体的隐性序列模式;该方法也可以用于其他聚集型蛋白质功能位点的识别。 展开更多
关键词 深度卷积神经网络 无序蛋白质 序列模式 识别
在线阅读 下载PDF
基于全卷积神经网络方法的玉米田间杂草识别 被引量:15
20
作者 李彧 余心杰 郭俊先 《江苏农业科学》 北大核心 2022年第6期93-100,共8页
杂草是危害农业和林业生产的三害之一,对农业生产、生态环境、生物多样性等均会造成一定的危害。要解决杂草问题首先需要对杂草实现高效准确的识别,通过拍摄新疆旱地玉米大苗田间图像构建数据集,提取玉米苗与杂草2类标签,使用全卷积神... 杂草是危害农业和林业生产的三害之一,对农业生产、生态环境、生物多样性等均会造成一定的危害。要解决杂草问题首先需要对杂草实现高效准确的识别,通过拍摄新疆旱地玉米大苗田间图像构建数据集,提取玉米苗与杂草2类标签,使用全卷积神经网络(FCN)准确地分割2类目标实现杂草识别。利用图像翻转、镜像、对比度增强、亮度增强等4种增广方法扩增数据集,利用迁移学习技巧,对模型采取非初始参数训练,提升模型识别准确率。结果表明,选择的U-Net模型识别效果最佳,能够有效地克服阴天光照、地膜等因素干扰,实现杂草的快速准确识别,验证集识别正确率96.13%,能够满足杂草识别的实际要求。 展开更多
关键词 杂草识别 卷积神经网络 深度学习 语义分割 U-Net模型 VGG
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部