为了提升弱纹理区域无监督多视图深度估计性能,文中提出一种基于邻域自适应无监督多视图深度估计算法。算法采用双分支结构,深度估计分支首先采用邻域自适应深度分布方法改善弱纹理区域深度分布;其次采用深度变化概率引导的深度假设范...为了提升弱纹理区域无监督多视图深度估计性能,文中提出一种基于邻域自适应无监督多视图深度估计算法。算法采用双分支结构,深度估计分支首先采用邻域自适应深度分布方法改善弱纹理区域深度分布;其次采用深度变化概率引导的深度假设范围细化后续阶段深度估计。为了提高对场景边缘的识别,采用基于标准差的深度平滑约束。神经渲染分支用于提高深度估计能力,为了增强与深度估计分支间的几何一致性,采用融合图像颜色与深度信息的采样方法。由实验结果可知,该算法在DTU数据集测试完整度误差和整体精度误差优于其他无监督算法,且完整度误差比DS⁃MVSNet减小16.71%。可视化结果表明,针对弱纹理区域深度估计性能提升明显。在Tanks and Temples数据集上进行泛化性验证,整体性能(Mean)为56.22,证明了所提算法的有效性。展开更多
对于复杂天气场景图像模糊、低对比度和颜色失真所导致的深度信息预测不准的问题,以往的研究均以标准场景的深度图作为先验信息来对该类场景进行深度估计。然而,这一方式存在先验信息精度较低等问题。对此,提出一个基于多尺度注意力机...对于复杂天气场景图像模糊、低对比度和颜色失真所导致的深度信息预测不准的问题,以往的研究均以标准场景的深度图作为先验信息来对该类场景进行深度估计。然而,这一方式存在先验信息精度较低等问题。对此,提出一个基于多尺度注意力机制的单目深度估计模型TalentDepth,以实现对复杂天气场景的预测。首先,在编码器中融合多尺度注意力机制,在减少计算成本的同时,保留每个通道的信息,提高特征提取的效率和能力。其次,针对图像深度不清晰的问题,基于几何一致性,提出深度区域细化(Depth Region Refinement,DSR)模块,过滤不准确的像素点,以提高深度信息的可靠性。最后,输入图像翻译模型所生成的复杂样本,并计算相应原始图像上的标准损失来指导模型的自监督训练。在NuScence,KITTI和KITTI-C这3个数据集上,相比于基线模型,所提模型对误差和精度均有优化。展开更多
自监督单目深度估计受到了国内外研究人员的广泛关注。现有基于深度学习的自监督单目深度估计方法主要采用编码器-解码器结构。然而,这些方法在编码过程中对输入图像进行下采样操作,导致部分图像信息,尤其是图像的边界信息丢失,进而影...自监督单目深度估计受到了国内外研究人员的广泛关注。现有基于深度学习的自监督单目深度估计方法主要采用编码器-解码器结构。然而,这些方法在编码过程中对输入图像进行下采样操作,导致部分图像信息,尤其是图像的边界信息丢失,进而影响深度图的精度。针对上述问题,提出一种基于拉普拉斯金字塔的自监督单目深度估计方法(Self-supervised Monocular Depth Estimation Based on the Laplace Pyramid,LpDepth)。此方法的核心思想是:首先,使用拉普拉斯残差图丰富编码特征,以弥补在下采样过程中丢失的特征信息;其次,在下采样过程中使用最大池化层突显和放大特征信息,使编码器在特征提取过程中更容易地提取到训练模型所需要的特征信息;最后,使用残差模块解决过拟合问题,提高解码器对特征的利用效率。在KITTI和Make3D等数据集上对所提方法进行了测试,同时将其与现有经典方法进行了比较。实验结果证明了所提方法的有效性。展开更多
文摘为了提升弱纹理区域无监督多视图深度估计性能,文中提出一种基于邻域自适应无监督多视图深度估计算法。算法采用双分支结构,深度估计分支首先采用邻域自适应深度分布方法改善弱纹理区域深度分布;其次采用深度变化概率引导的深度假设范围细化后续阶段深度估计。为了提高对场景边缘的识别,采用基于标准差的深度平滑约束。神经渲染分支用于提高深度估计能力,为了增强与深度估计分支间的几何一致性,采用融合图像颜色与深度信息的采样方法。由实验结果可知,该算法在DTU数据集测试完整度误差和整体精度误差优于其他无监督算法,且完整度误差比DS⁃MVSNet减小16.71%。可视化结果表明,针对弱纹理区域深度估计性能提升明显。在Tanks and Temples数据集上进行泛化性验证,整体性能(Mean)为56.22,证明了所提算法的有效性。
文摘对于复杂天气场景图像模糊、低对比度和颜色失真所导致的深度信息预测不准的问题,以往的研究均以标准场景的深度图作为先验信息来对该类场景进行深度估计。然而,这一方式存在先验信息精度较低等问题。对此,提出一个基于多尺度注意力机制的单目深度估计模型TalentDepth,以实现对复杂天气场景的预测。首先,在编码器中融合多尺度注意力机制,在减少计算成本的同时,保留每个通道的信息,提高特征提取的效率和能力。其次,针对图像深度不清晰的问题,基于几何一致性,提出深度区域细化(Depth Region Refinement,DSR)模块,过滤不准确的像素点,以提高深度信息的可靠性。最后,输入图像翻译模型所生成的复杂样本,并计算相应原始图像上的标准损失来指导模型的自监督训练。在NuScence,KITTI和KITTI-C这3个数据集上,相比于基线模型,所提模型对误差和精度均有优化。
文摘自监督单目深度估计受到了国内外研究人员的广泛关注。现有基于深度学习的自监督单目深度估计方法主要采用编码器-解码器结构。然而,这些方法在编码过程中对输入图像进行下采样操作,导致部分图像信息,尤其是图像的边界信息丢失,进而影响深度图的精度。针对上述问题,提出一种基于拉普拉斯金字塔的自监督单目深度估计方法(Self-supervised Monocular Depth Estimation Based on the Laplace Pyramid,LpDepth)。此方法的核心思想是:首先,使用拉普拉斯残差图丰富编码特征,以弥补在下采样过程中丢失的特征信息;其次,在下采样过程中使用最大池化层突显和放大特征信息,使编码器在特征提取过程中更容易地提取到训练模型所需要的特征信息;最后,使用残差模块解决过拟合问题,提高解码器对特征的利用效率。在KITTI和Make3D等数据集上对所提方法进行了测试,同时将其与现有经典方法进行了比较。实验结果证明了所提方法的有效性。