期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多模态部分伪造数据集的构建与基准检测 被引量:2
1
作者 郑盛有 陈雁翔 +1 位作者 赵祖兴 刘海洋 《计算机应用》 CSCD 北大核心 2024年第10期3134-3140,共7页
针对现有视频伪造数据集缺少多模态伪造场景与部分伪造场景的问题,构建一个综合使用多种音、视频伪造方法的、伪造比例可调的多模态部分伪造数据集PartialFAVCeleb。所提数据集基于FakeAVCeleb多模态伪造数据集,并通过拼接真伪数据构建... 针对现有视频伪造数据集缺少多模态伪造场景与部分伪造场景的问题,构建一个综合使用多种音、视频伪造方法的、伪造比例可调的多模态部分伪造数据集PartialFAVCeleb。所提数据集基于FakeAVCeleb多模态伪造数据集,并通过拼接真伪数据构建,其中伪造数据由FaceSwap、FSGAN(Face Swapping Generative Adversarial Network)、Wav2Lip(Wave to Lip)和SV2TTS(Speaker Verification to Text-To-Speech)这4种方法生成。在拼接过程中,使用概率方法生成伪造片段在时域与模态上的定位,并对边界进行随机化处理以贴合实际伪造场景,并通过素材筛选避免背景跳变现象。最终生成的数据集对于每个伪造比例可产生3970条视频数据。在基准检测中,使用多种音视频特征提取器,并分别进行强、弱监督两种条件下的测试,其中弱监督测试基于层次多示例学习(HMIL)方法实现。测试结果显示,各个测试模型在伪造比例较低数据上的性能表现显著低于在伪造比例较高数据上的性能,且弱监督条件下各模型的性能表现显著低于强监督条件下的表现,这验证了该部分伪造数据集的弱监督检测困难性。以上结果表明,以所提数据集为代表的多模态部分伪造场景有充分的研究价值。 展开更多
关键词 深度伪造检测 多模态伪造检测 部分伪造 多示例学习 深度伪造数据集 内容安全
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部