期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种强化伪造区域关注的深度伪造人脸检测方法
1
作者 张文祥 王夏黎 +1 位作者 王欣仪 杨宗宝 《图学学报》 北大核心 2025年第1期47-58,共12页
深度伪造人脸技术发展迅速并已被广泛应用于各种不良途径,检测被篡改的面部图像和视频也因此成为了一个重要的研究课题。现有的卷积神经网络存在过拟合,泛化性差的问题,在未知的合成人脸数据上表现不佳。针对这一不足,提出一种强化伪造... 深度伪造人脸技术发展迅速并已被广泛应用于各种不良途径,检测被篡改的面部图像和视频也因此成为了一个重要的研究课题。现有的卷积神经网络存在过拟合,泛化性差的问题,在未知的合成人脸数据上表现不佳。针对这一不足,提出一种强化伪造区域关注的深度伪造人脸检测方法。首先,引入注意力机制处理用于分类的特征图,学习到的注意力图可以突出被篡改的面部区域,提高了模型的泛化能力;其次,在骨干网络之后连接了伪造区域检测模块,通过检测多尺度锚框中是否存在伪造痕迹,减少了全局人脸信息的干扰,进一步加强了模型对局部伪造区域的关注;最后,引入一种一致性表示学习框架,通过明确约束同一输入的不同表示之间的一致性,使模型更加关注内在的伪造证据,避免过拟合。在FaceForensics++,Celeb-DF-v2和DFDC等3个数据集上,分别以EfficientNet-b4和Xception作为骨干网络进行实验。结果表明,该方法在数据集内评估时达到了较好的性能,在跨数据集评估时则优于原网络和其他先进的方法。 展开更多
关键词 深度伪造人脸检测 注意力机制 伪造区域检测 多尺度锚框 一致性表示
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部