期刊文献+
共找到1,518篇文章
< 1 2 76 >
每页显示 20 50 100
联合人工神经网络和深度强化学习的卫星通信系统资源优化管理
1
作者 颜晓娟 王承祥 张千锋 《广西大学学报(自然科学版)》 北大核心 2025年第2期397-408,共12页
为了缓解卫星通信系统中频谱资源受限与业务数量不断增长且服务质量(QoS)要求多样之间的矛盾,联合人工神经网络(ANN)和深度强化学习(DRL),在用户时延QoS约束和最小性能要求下,以系统性能最大化为目标研究资源优化管理问题。首先,分析了... 为了缓解卫星通信系统中频谱资源受限与业务数量不断增长且服务质量(QoS)要求多样之间的矛盾,联合人工神经网络(ANN)和深度强化学习(DRL),在用户时延QoS约束和最小性能要求下,以系统性能最大化为目标研究资源优化管理问题。首先,分析了用户在非正交多址接入(NOMA)和正交多址接入(OMA)技术下的可达性能,推导了最小性能要求和系统关键参数对多址接入技术选择的影响。其次,利用ANN对特定场景下用户选择多址接入技术,避免在NOMA技术不适用场景进行功率优化分配。最后,提出上下界可变DRL算法,根据奖励动态地调整NOMA用户对功率分配因子的寻优区间,从而提高算法的收敛速度。仿真结果验证了时延QoS约束对用户性能的不利影响,最小性能要求对NOMA技术应用优势的影响,以及所提方案在提高收敛速度和卫星通信网络可达性能上的优势。 展开更多
关键词 卫星通信系统 资源优化 人工神经网络 深度强化学习 时延服务质量约束
在线阅读 下载PDF
基于人工神经网络耦联遗传算法优化肉葡萄球菌高密度培养基配方
2
作者 王仪 祝超智 +4 位作者 白雪原 郑飏衣 张新军 仝林 赵改名 《肉类研究》 北大核心 2025年第5期1-9,共9页
为优化肉葡萄球菌配方,实现发酵罐中高密度培养及高活性发酵剂制备,以胰蛋白胨大豆肉汤培养基为基础培养基,采用单因素试验与Box-Behnken响应面试验优化培养基配方,并构建人工神经网络-遗传算法(artificial neural network-genetic algo... 为优化肉葡萄球菌配方,实现发酵罐中高密度培养及高活性发酵剂制备,以胰蛋白胨大豆肉汤培养基为基础培养基,采用单因素试验与Box-Behnken响应面试验优化培养基配方,并构建人工神经网络-遗传算法(artificial neural network-genetic algorithm,ANN-GA)模型。结果表明,氮源是影响肉葡萄球菌活菌数的最重要因素。与响应面优化模型相比,ANN-GA模型能够更精确地预测培养基配方对肉葡萄球菌活菌数的影响,误差小且优化效果更好,最佳培养基配方为葡萄糖3.21 g/L、大豆蛋白胨20.17 g/L、牛肉浸粉20.17 g/L、磷酸氢二钾5.63 g/L、氯化钠5.0 g/L、七水硫酸镁0.2 g/L。在5 L发酵罐水平小试最大活菌数可达1.67×10^(10)CFU/mL。 展开更多
关键词 肉葡萄球菌 高密度培养基 响应面法 人工神经网络 遗传算法 优化
在线阅读 下载PDF
响应面法结合深度神经网络优化刺五加果多糖提取工艺 被引量:3
3
作者 苏适 董立强 +3 位作者 黎莉 王双侠 王喜庆 张金凤 《包装与食品机械》 北大核心 2025年第2期66-74,共9页
为提高刺五加果多糖的提取率,提出基于Box-Behnken响应面法与深度神经网络模型(deep neural network,DNN)协同优化的微波辅助离子液体提取工艺。通过响应面设计,筛选微波功率、离子液体浓度、提取时间及料液比等参数,并构建二次回归模型... 为提高刺五加果多糖的提取率,提出基于Box-Behnken响应面法与深度神经网络模型(deep neural network,DNN)协同优化的微波辅助离子液体提取工艺。通过响应面设计,筛选微波功率、离子液体浓度、提取时间及料液比等参数,并构建二次回归模型;利用DNN模型解析多因素间非线性关系,优化工艺条件。结果表明,DNN模型得到的最优工艺条件为微波功率350 W、离子液体浓度0.6 mol/L、提取时间35 min、料液比1∶24(g/mL),多糖提取率为16.71%,高于响应面法优化的提取工艺结果。体外抗氧化试验显示,刺五加果多糖对羟基自由基、DPPH自由基和ABTS^(+)·自由基的半数抑制浓度(IC_(50))分别为2.36,2.05,2.47 mg/mL。研究为刺五加果在功能性食品及抗衰老保健品开发中的应用提供理论依据。 展开更多
关键词 刺五加果 多糖 工艺优化 响应面法 深度神经网络 抗氧化活性
在线阅读 下载PDF
人工神经网络算法下的产品造型意象预测模型
4
作者 陈国强 支梦帆 +1 位作者 申正义 顾紫轩 《机械设计与制造》 北大核心 2025年第7期278-284,289,共8页
从用户情感出发,对产品造型特征与目标用户情感意象的匹配关系进行研究。以救援挖掘机为设计对象,运用问卷调研法、语义差异法、聚类分析等方法获取用户评价指标与优势样本。通过决策树方法推理得到产品造型特征要素,针对样本进行造型... 从用户情感出发,对产品造型特征与目标用户情感意象的匹配关系进行研究。以救援挖掘机为设计对象,运用问卷调研法、语义差异法、聚类分析等方法获取用户评价指标与优势样本。通过决策树方法推理得到产品造型特征要素,针对样本进行造型因子的解构与提取。构建产品造型因子编码矩阵与用户情感意象评价矩阵,搭建产品造型意象人工神经网络(ANN)预测模型,实现产品造型特征与用户情感意象之间的非线性映射关系,通过对比多元线性回归预测模型验证其优势性。根据产品造型意象人工神经网络预测模型推荐造型因子进行设计实践,验证方法的可行性,为特种车辆类产品造型的优化设计提供参考。 展开更多
关键词 人工神经网络(ANN) 造型优化设计 产品意象预测
在线阅读 下载PDF
基于浅层人工神经网络的可移植执行恶意软件静态检测模型
5
作者 花天辰 马晓宁 智慧 《计算机应用》 北大核心 2025年第6期1911-1921,共11页
针对基于深度学习的可移植执行(PE)恶意软件检测方法中,数据集存在的不平衡或不完整问题,以及神经网络结构过深或特征集庞大而导致的模型计算资源开销和耗时增加问题,提出一种基于浅层人工神经网络(SANN)的PE恶意软件静态检测模型。首先... 针对基于深度学习的可移植执行(PE)恶意软件检测方法中,数据集存在的不平衡或不完整问题,以及神经网络结构过深或特征集庞大而导致的模型计算资源开销和耗时增加问题,提出一种基于浅层人工神经网络(SANN)的PE恶意软件静态检测模型。首先,利用LIEF(Library to Instrument Executable Formats)库创建PE特征提取器从EMBER数据集中提取PE文件样本,并提出一种特征组合,该特征集具备更少的PE文件特征,从而在减小特征空间和模型参数量的同时能够提高深度学习模型的性能;其次,生成特征向量,通过数据清洗去除未标记的样本;再次,对特征集内的不同特征值进行归一化处理;最后,将特征向量输入SANN中进行训练和测试。实验结果表明,SANN可达到95.64%的召回率和95.24%的准确率,相较于MalConv模型和LightGBM模型,SANN的准确率分别提高了1.19和1.57个百分点。SANN的总工作耗时约为用时最少的对比模型LightGBM的1/2。此外,SANN在面对未知攻击时具备较好的弹性,且仍能够保持较高的检测水平。 展开更多
关键词 恶意软件 静态检测 深度学习 浅层人工神经网络 可移植执行文件
在线阅读 下载PDF
有限元模型修正中的贝叶斯深度神经网络构架优化设计
6
作者 何宇轩 尹涛 王曦 《振动与冲击》 北大核心 2025年第6期184-190,共7页
贝叶斯神经网络(Bayesian neural network,BNN)相较于传统人工神经网络具有更强的噪声鲁棒性,在结构系统识别与健康监测领域逐渐受到关注,目前该领域的相关文献主要集中于单隐含层BNN的应用及其构架设计。具有一定深度的多隐含层构架相... 贝叶斯神经网络(Bayesian neural network,BNN)相较于传统人工神经网络具有更强的噪声鲁棒性,在结构系统识别与健康监测领域逐渐受到关注,目前该领域的相关文献主要集中于单隐含层BNN的应用及其构架设计。具有一定深度的多隐含层构架相比于单隐含层在复杂高维数据拟合上通常具有更强的泛化能力,但针对多隐含层BNN构架优化设计问题的研究目前尚未见报道。该研究旨在针对多隐含层BNN并结合有限元模型修正问题开展构架优化设计研究,发展基于证据对数的多隐含层BNN网络性能定量量度,并提出一种实现多隐含层BNN各隐含层神经元数量同步优化的高效算法,获得针对具体模型修正问题的多隐含层BNN构架优化设计方案。通过基于现场实测模态参数的某大跨度钢结构人行桥模型修正验证了所提出方法的正确性和有效性。 展开更多
关键词 结构系统识别 结构健康监测 有限元模型修正 贝叶斯深度神经网络 构架优化设计
在线阅读 下载PDF
基于神经网络的光纤温度估算方法的优化 被引量:1
7
作者 李苏雅 董艳唯 +4 位作者 李琳 张弛 李楠 宁琦 陈永辉 《光通信研究》 北大核心 2025年第1期83-88,共6页
【目的】为了有效估算基于布里渊散射的分布式光纤传感中光纤的温度,文章将多层前馈人工神经网络(ANN)应用于温度的估算。【方法】文章在Matlab软件中编写了用于光纤温度计算的单斜坡法、基于伪Voigt模型的最小二乘拟合法和ANN程序,同... 【目的】为了有效估算基于布里渊散射的分布式光纤传感中光纤的温度,文章将多层前馈人工神经网络(ANN)应用于温度的估算。【方法】文章在Matlab软件中编写了用于光纤温度计算的单斜坡法、基于伪Voigt模型的最小二乘拟合法和ANN程序,同时仿真产生了不同信噪比(SNR)下的布里渊谱,采用以上3种算法计算了光纤温度,验证了ANN方法的有效性。在此基础上基于以上仿真产生的布里渊谱研究了ANN的关键参数,即隐层数量、隐层神经元数量和训练目标对训练速度、温度计算时间和准确性的影响规律。【结果】结果表明,ANN方法在SNR为22和37 dB时最大温度误差分别仅为1.18和0.63℃,且计算时间仅为最小二乘拟合法的1/1000左右。当隐层神经元数量不变时,随着隐层层数的增加,训练时间明显下降,计算时间线性增加,但其对温度估算的准确性几乎无影响;随着隐层神经元数量的增加,训练时间和计算时间均增加,隐层有21个神经元时,训练时间近似为1个神经元的67倍,但其对温度估算的准确性几乎无影响;训练目标(布里渊频移误差的平方)小于临界值(约为1 MHz 2)时,随着训练目标的增加,温度误差几乎不变,超过临界值后,随着训练目标的增加,温度误差增大。【结论】采用多层前馈ANN应用于基于布里渊散射的分布式光纤传感中的光纤温度估算时,建议选择单隐层且隐层神经元选择1个,训练目标选择1 MHz 2。 展开更多
关键词 分布式光纤传感 布里渊散射 布里渊频移 人工神经网络 温度 优化
在线阅读 下载PDF
基于人工神经网络的甲烷富氧燃烧机理优化 被引量:2
8
作者 黄章俊 徐通 +3 位作者 何洪浩 孙刘涛 田红 李新卓 《动力工程学报》 CAS CSCD 北大核心 2024年第4期520-527,共8页
采用带误差传播的直接关系图法、全物种敏感性分析和人工神经网络(ANN)联合方法,以点火延迟时间和CO摩尔分数为优化目标,通过对甲烷富氧燃烧详细机理USC mech2.0的简化和优化,提出了基于人工神经网络的甲烷富氧燃烧优化机理(ANN-OMOC)... 采用带误差传播的直接关系图法、全物种敏感性分析和人工神经网络(ANN)联合方法,以点火延迟时间和CO摩尔分数为优化目标,通过对甲烷富氧燃烧详细机理USC mech2.0的简化和优化,提出了基于人工神经网络的甲烷富氧燃烧优化机理(ANN-OMOC)。甲烷富氧燃烧模拟计算和对比分析的结果表明:相比于甲烷富氧燃烧简化机理FSSA的预测误差,优化机理ANN-OMOC对点火延迟时间、层流火焰速度的预测误差分别从2.53%、24.38%降到0.50%、14.41%;与甲烷富氧燃烧的简化机理DRGEP和FSSA相比,优化机理ANN-OMOC对点火延迟时间、OH摩尔分数峰值和CO摩尔分数峰值的预测结果最佳,其相对误差均在10%以下。 展开更多
关键词 甲烷 富氧燃烧 机理优化 人工神经网络 点火延迟时间 CO摩尔分数
在线阅读 下载PDF
融合深度神经网络的电力系统经济-环保随机调度方法
9
作者 陈远扬 谭益 李勇 《电网技术》 北大核心 2025年第5期1993-2003,共11页
通过优化调度改善电网有功潮流分布、减小火电大气污染物与二氧化碳排放,是实现电力系统环保、经济、安全运行的重要途径。针对含碳捕集电厂、风力发电、常规火电等多种电源的电力系统,该文综合考虑二氧化碳与大气污染物排放、风电出力... 通过优化调度改善电网有功潮流分布、减小火电大气污染物与二氧化碳排放,是实现电力系统环保、经济、安全运行的重要途径。针对含碳捕集电厂、风力发电、常规火电等多种电源的电力系统,该文综合考虑二氧化碳与大气污染物排放、风电出力随机性、N-1故障等多类型因素,建立了面向环保、安全、经济运行的电力系统有功随机调度模型。在该模型中,目标函数考虑了火电的环保与燃料成本、风电成本、N-1故障后校正控制成本等因素,约束条件包括正常运行约束、N-1故障后计及校正控制的电网安全约束等。针对所提有功随机调度模型的特点,该文提出了融合全连接型深度神经网络的快速高效求解方法。该方法通过全连接型深度神经网络构建用于优化软件寻优搜索的初始点,进而加速所提模型的求解过程。最后,该文通过3个修改后的IEEE测试系统验证了所提模型与方法的有效性。 展开更多
关键词 环保-经济调度 碳捕集电厂 风电 随机优化 深度神经网络
在线阅读 下载PDF
改进SHO优化神经网络模型
10
作者 李健 王海瑞 +2 位作者 王增辉 付海涛 于维霖 《吉林大学学报(理学版)》 北大核心 2025年第3期835-844,共10页
针对Googlenet模型识别准确率低、敏感性不佳等问题,提出一个应用改进的海马优化(SASHO)算法超参数优化Googlenet模型.首先,利用Sobel序列和自适应权重算法对海马优化算法进行改进;其次,对比4个基础神经网络选出最适合本文数据集的Googl... 针对Googlenet模型识别准确率低、敏感性不佳等问题,提出一个应用改进的海马优化(SASHO)算法超参数优化Googlenet模型.首先,利用Sobel序列和自适应权重算法对海马优化算法进行改进;其次,对比4个基础神经网络选出最适合本文数据集的Googlenet作为基础识别模型;最后,利用改进后的SASHO算法对Googlenet模型参数进行优化,构建新模型SASHO-Googlenet.为验证SASHO-Googlenet模型的有效性,将SASHO-Googlenet模型与经过其他4个群智能算法优化的模型针对7个指标进行比较.结果表明,SASHO-Googlenet模型准确率达95.36%,敏感性达95.35%,特异性达95.39%,精度达96.47%,召回率达95.35%,f_measure达95.90%,g_mean达95.37%.实验结果表明,SASHO-Googlenet模型综合性能最佳. 展开更多
关键词 人工智能 深度学习 海马优化算法 参数优化
在线阅读 下载PDF
基于图神经网络的SDN路由算法优化
11
作者 张晓莉 汤颖琪 宋婉莹 《电讯技术》 北大核心 2025年第1期18-24,共7页
针对现有路由方案不适合学习图形结构信息,对陌生拓扑适应性不佳的问题,提出了一种基于图神经网络的软件定义网络(Software Defined Network,SDN)路由算法G-PPO。引入近端策略优化(Proximal Policy Optimization,PPO)强化学习算法实现... 针对现有路由方案不适合学习图形结构信息,对陌生拓扑适应性不佳的问题,提出了一种基于图神经网络的软件定义网络(Software Defined Network,SDN)路由算法G-PPO。引入近端策略优化(Proximal Policy Optimization,PPO)强化学习算法实现模型训练,利用消息传递神经网络(Massage Passing Neural Network,MPNN)对网络拓扑进行学习,通过调整链路权重完成路由路径的调整。G-PPO将图神经网络对网络拓扑信息的感知能力和深度强化学习的自主学习能力有效结合,提升路由策略的性能。实验结果表明,与相关算法比较,所提算法的平均时延和丢包率、网络链路利用率和吞吐量指标均为最优。在3种不同拓扑上,该算法较其他算法最少提升10.5%吞吐量,最多提升95.6%丢包率,表明所提算法具有更好的适应不同网络拓扑的能力。 展开更多
关键词 软件定义网络 路由优化 神经网络 深度强化学习 近端策略优化
在线阅读 下载PDF
人工神经网络优化油莎豆油亚临界萃取工艺 被引量:1
12
作者 邓淑君 郝琴 +3 位作者 万楚筠 郭婷婷 魏春磊 郑明明 《中国油料作物学报》 CAS CSCD 北大核心 2024年第5期1178-1186,共9页
为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-... 为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-BP-ANN模型的寻优结果进行了比较。结果表明,RSM模型优化的萃取条件为:料液比(脱皮油莎豆∶丁烷)1∶10.36 g/mL、萃取时间45 min、萃取温度30℃、坯料厚度0.5 mm;PSOBP-ANN模型优化的萃取条件为:料液比1∶10.67 g/mL、萃取时间40.10 min、萃取温度34℃、轧坯厚度0.5 mm。在最佳条件下,RSM模型预测提取率为91.63%,验证值为94.27%,相对误差2.56%;PSO-BP-ANN模型预测值为95.58%,验证值为95.14%,相对误差0.46%。采用人工神经网络耦合粒子群算法(PSO-BP-ANN)优化油莎豆油亚临界萃取工艺,具有提取率高、相对误差小等优势。本研究可为亚临界萃取技术在油莎豆油高效制取中应用提供参考。 展开更多
关键词 反向传播人工神经网络 粒子群优化算法 亚临界丁烷萃取 脱皮油莎豆 工艺优化
在线阅读 下载PDF
基于人工神经网络智能算法的9310钢本构模型优化 被引量:2
13
作者 施文鹏 孙岑花 +2 位作者 李佳俊 王宇航 董显娟 《精密成形工程》 北大核心 2024年第3期171-180,共10页
目的研究9310钢在变形温度为800~1200℃、应变速率为0.01~50s-1和高度压下量为70%条件下的热变形行为,建立预测效果相对较好的9310钢本构模型。方法使用Gleeble-3800热模拟机对9310钢进行等温恒应变速率热压缩实验,基于热压缩实验数据,... 目的研究9310钢在变形温度为800~1200℃、应变速率为0.01~50s-1和高度压下量为70%条件下的热变形行为,建立预测效果相对较好的9310钢本构模型。方法使用Gleeble-3800热模拟机对9310钢进行等温恒应变速率热压缩实验,基于热压缩实验数据,分析了应变速率对9310钢流动软化效应的影响,建立了考虑应变补偿的Arrhenius本构模型与支持向量回归(SVR)本构模型,并进行了模型精度分析,之后引入人工神经网络(ANN)智能算法优化了Arrhenius本构模型。结果与变形温度相比,应变速率对9310钢流动软化效应的影响更为显著。相较于支持向量回归(SVR)本构模型,考虑应变补偿的Arrhenius本构模型精度更高,其相关系数R为0.9934,平均相对误差(AARE)和均方误差(MSE)分别为0.0556和89.362,它在预测高应变速率(1、10、50 s-1)流动应力时出现了较大偏差,经ANN智能算法优化后,相关系数R提高至0.9991,AARE和MSE分别降至0.0199和9.998,且绝对误差在±10MPa以内的预测流动应力占比为98.34%。结论在低应变速率(0.01 s-1)下软化效应更强,在高应变速率(10 s-1)下再结晶程度较低,软化效应较弱。ANN智能算法优化后的Arrhenius本构模型具有较高的精度,能较准确地预测9310钢的流动行为。 展开更多
关键词 9310钢 本构模型 Arrhenius型本构模型 人工神经网络(ANN) 智能算法优化
在线阅读 下载PDF
基于深度学习神经网络的轴流压气机失速预测
14
作者 邓雨阳 李继超 +2 位作者 刘景源 彭峰 张宏武 《推进技术》 北大核心 2025年第8期244-253,共10页
及时可靠预测失速对航空发动机安全稳定运行具有非常重要的意义,基于深度学习原理,利用长短期记忆网络(LSTM)对轴流压气机失速进行预测。利用试验测量的压气机失速过程数据作为学习样本,合理选择网络的结构模型,构建了基于LSTM的失速预... 及时可靠预测失速对航空发动机安全稳定运行具有非常重要的意义,基于深度学习原理,利用长短期记忆网络(LSTM)对轴流压气机失速进行预测。利用试验测量的压气机失速过程数据作为学习样本,合理选择网络的结构模型,构建了基于LSTM的失速预测模型,并利用灰狼优化算法(GWO)对LSTM的参数进行优化。在此基础上,将一组动态数据输入模型,利用回归预测方法完成后续时刻信号的预测,经过与实测数据对比验证了模型预测的可靠性。随后,利用该模型,通过递归预测方法对失速起始点进行了预测,与实际测得的失速起始时刻相比,模型可提前1s以上准确预测到失速的发生。与传统失速预警方法相比,该模型避免了阈值设定带来误报的可能,具有显著的应用潜力。 展开更多
关键词 航空发动机 压气机 失速 深度学习 长短时记忆网络 灰狼优化算法
在线阅读 下载PDF
基于卷积神经网络的窄线宽光谱结构参数优化
15
作者 富小鸥 王原丽 +1 位作者 杜庆国 付琴 《江苏大学学报(自然科学版)》 北大核心 2025年第4期438-443,共6页
为了解决传统光学结构设计需要大量的建模计算和仿真优化时间的问题,提出了基于卷积神经网络和遗传算法相结合的窄线宽光谱结构参数优化方法.以Y形全介质超表面结构为试验对象,利用时域有限差分方法仿真生成4096组数据集,构建并训练正... 为了解决传统光学结构设计需要大量的建模计算和仿真优化时间的问题,提出了基于卷积神经网络和遗传算法相结合的窄线宽光谱结构参数优化方法.以Y形全介质超表面结构为试验对象,利用时域有限差分方法仿真生成4096组数据集,构建并训练正向预测网络;进一步将训练好的网络与遗传算法相结合,实现超表面结构参数优化.仿真结果表明:训练好的预测网络在测试集上的损失值仅为5.6×10^(-4),且结合优化算法寻优得到的结果比原始数据集中最小半高全宽减小了0.040 nm.新方法相较于传统方法提升了复杂超表面结构的优化效率和效果. 展开更多
关键词 超表面 微纳结构设计 Fano共振 深度学习 卷积神经网络 优化算法
在线阅读 下载PDF
基于WOA-IC优化神经网络的隧道爆破振动预测研究
16
作者 高宇璠 傅洪贤 《振动与冲击》 北大核心 2025年第4期229-237,共9页
为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量... 为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量化,建立了包括3个定量参数和10个定性参数的更完整的数据集。利用信息准则对模型复杂度的反馈,构建了一个提高模型泛化能力的双层优化结构,分析改进ANN模型的激活函数和训练算法最优组合,并引入鲸鱼算法优化模型初始权值和阈值的选取,降低模型输出结果的偏差和波动。对比分析WOA-IC-ANN模型与传统经验公式、ANN模型、IC-ANN模型、WOA-ANN模型预测结果的差异。研究表明,WOA-IC-ANN模型的预测结果与实际吻合更好,误差显著降低,具有较好的泛化能力。研究成果可用于隧道爆破工程的振动预测,并为类似工作提供借鉴和参考。 展开更多
关键词 爆破振动 预测模型 信息准则(IC) 鲸鱼优化算法(WOA) 人工神经网络(ANN)
在线阅读 下载PDF
辽宁省人口老龄化趋势预测——基于超参数优化的人工神经网络模型 被引量:1
17
作者 邵小妞 刘峰 《绿色科技》 2024年第7期272-278,共7页
为积极应对人口老龄化,依据辽宁省第七次全国人口普查数据,分析了人口老龄化的发展现状和特征。基于人工神经网络模型对辽宁省2022-2035年未来的65周岁以上人口所占比重发展趋势进行了预测分析,结果表明:选用5层神经网络结构模型,每层... 为积极应对人口老龄化,依据辽宁省第七次全国人口普查数据,分析了人口老龄化的发展现状和特征。基于人工神经网络模型对辽宁省2022-2035年未来的65周岁以上人口所占比重发展趋势进行了预测分析,结果表明:选用5层神经网络结构模型,每层神经元数量为23,学习率为0.09462,训练得到的相对误差最小为0.0205。预测到2025年、2030年、2035年辽宁省65周岁及以上老年人口所占比重为21.23%、23.01%、23.77%,呈现稳定增长的趋势,老年人口规模不断增加,老龄化程度持续加深。根据模型的预测结果分析,提出了相应的对策建议:即发展老龄产业为老年人口服务;建立和完善以“社区为依托、养老机构为支撑、家庭为核心”的养老服务体系;开发利用老年人力资源,使之老有所用、老有所为。 展开更多
关键词 人口老龄化 超参数优化 人工神经网络模型 辽宁省
在线阅读 下载PDF
基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测
18
作者 邱冶 袁有明 伞冰冰 《湖南大学学报(自然科学版)》 北大核心 2025年第3期82-93,共12页
为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态... 为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态函数,并通过样本熵对其进行重构获得子序列;其次,针对各子序列完成双向长短期记忆网络的构建、训练及预测,并利用贝叶斯优化(BO)算法对神经网络超参数进行优化;最后,基于低矮房屋风洞测压试验数据进行了风荷载预测,验证了学习模型的有效性.研究表明,与传统预测模型(多层感知器、BiLSTM)相比,基于改进经验模态分解与BiLSTM神经网络的预测模型具有较高的预测精度和计算效率,适用于高斯与非高斯风压信号预测. 展开更多
关键词 低矮房屋 风荷载 深度学习 双向LSTM 改进经验模态分解 贝叶斯优化 时程预测
在线阅读 下载PDF
基于混合优化算法和深度神经网络模型结合的致密砂岩气藏裂缝参数优化 被引量:1
19
作者 罗山贵 赵玉龙 +4 位作者 肖红林 陈伟华 贺戈 张烈辉 杜诚 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期140-151,共12页
水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且... 水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且依靠现场工程师经验和正交实验等传统方法难以获得最佳的裂缝参数设计。为此,建立了一种新的基于混合优化算法和自适应深度神经网络(DNN)结合的致密气藏裂缝参数优化方法。首先,混合优化算法采用遗传算法(GA)和贝叶斯自适应直接搜索(BADS)之间循环迭代的混合策略。在自适应学习过程中,提出了以“最大平均距离点”作为最不确定解,同时辅以最有希望解和少量拉丁超立方采样解共同更新优化过程中的DNN代理模型。随后,将建立的优化方法用于非均质致密砂岩气藏裂缝参数优化。研究结果表明:(1)在标准测试函数和低维裂缝参数优化问题上,GA+BADS混合优化算法表现出了显著优于GA的寻优速度;(2)针对高维裂缝参数优化问题,GA+BADS混合优化算法在约1/2的GA总数值模拟次数下提高了131万元的经济净现值(NPV),收敛速度和寻优精度都明显增加;(3)相比于GA+BADS混合优化算法,在获得相同NPV时,自适应DNN代理加速优化可再减少24.54%的数值模拟运算次数。结论认为,该优化方法显著提升了优化效率,为解决非常规油气藏中水力压裂裂缝参数设计问题提供了一套可行且高效的智能优化方法,将有力促进非常规油气的规模效益开发。 展开更多
关键词 致密气 沙溪庙组 裂缝参数优化 混合优化算法 深度神经网络 自适应学习 代理模型
在线阅读 下载PDF
深度神经网络辅助的垂直回收火箭在线轨迹优化方法 被引量:1
20
作者 王亚洲 佃松宜 向国菲 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第4期130-141,共12页
针对垂直回收火箭在线轨迹规划的计算效率和初始敏感问题,提出一种深度神经网络辅助的在线轨迹优化算法。考虑火箭动力下降段的气动阻力,使用变分法和庞德里亚金极小值原理推导最优性条件,首次证明最优推力矢量幅值存在Bang-Bang特征。... 针对垂直回收火箭在线轨迹规划的计算效率和初始敏感问题,提出一种深度神经网络辅助的在线轨迹优化算法。考虑火箭动力下降段的气动阻力,使用变分法和庞德里亚金极小值原理推导最优性条件,首次证明最优推力矢量幅值存在Bang-Bang特征。在此基础上,设计离线训练和在线优化两步求解框架。一是离线训练深度神经网络,在初值大范围波动条件下,有监督学习Bang-Bang特征的结构参数;二是在线规划最优轨迹,将训练好的深度神经网络作为辅助求解器,生成伪谱离散法的分段点,嵌入序列凸优化算法求解。该算法将最优推力的与伪谱法的分段特性有机结合,提高了有限离散点下的求解精度。仿真结果表明,该算法能有效提升在线轨迹规划的求解效率和初值适应性。 展开更多
关键词 垂直回收 深度神经网络 轨迹优化 分段伪谱离散 优化
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部