期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于深层残差网络和三元组损失的雷达信号识别方法 被引量:10
1
作者 石礼盟 杨承志 吴宏超 《系统工程与电子技术》 EI CSCD 北大核心 2020年第11期2506-2512,共7页
针对分类网络难以有效扩展分类数量的问题,提出了一种基于深层残差网络和三元组损失的雷达信号识别方法。该方法首先将雷达信号作为深层残差网络的输入,通过一维卷积将雷达信号映射到128维欧几里得空间,得到信号的特征向量;然后利用三... 针对分类网络难以有效扩展分类数量的问题,提出了一种基于深层残差网络和三元组损失的雷达信号识别方法。该方法首先将雷达信号作为深层残差网络的输入,通过一维卷积将雷达信号映射到128维欧几里得空间,得到信号的特征向量;然后利用三元组损失函数调整网络参数,使得同类信号之间特征向量的欧式距离减小而不同类别信号之间的距离增大;最后通过基于样本库的识别算法实现对信号的分类识别。实验结果表明,相较于传统的分类网络,该方法在保证识别准确率的同时使得模型能够对分类数量进行有效扩展。 展开更多
关键词 雷达信号识别 深层残差网络 三元组损失函数 一维卷积
在线阅读 下载PDF
基于深层残差网络的山区DEM超分辨率重构 被引量:6
2
作者 张宏鸣 全凯 +3 位作者 杨亚男 杨江涛 陈欢 郭伟玲 《农业机械学报》 EI CAS CSCD 北大核心 2021年第1期178-184,共7页
针对大区域高分辨率数字高程模型(DEM)数据较难获取、超分辨率重构(降尺度)较低分辨率的DEM精度不高、难以满足实际需要的问题,提出一种对起伏特征较明显的山区DEM超分辨率重构的方法。利用较深层的神经网络充分学习高低分辨率DEM之间... 针对大区域高分辨率数字高程模型(DEM)数据较难获取、超分辨率重构(降尺度)较低分辨率的DEM精度不高、难以满足实际需要的问题,提出一种对起伏特征较明显的山区DEM超分辨率重构的方法。利用较深层的神经网络充分学习高低分辨率DEM之间的非线性映射关系;为了降低训练难度,结合残差学习的方法进行数据训练。将双立方插值法、稀疏混合估计法重构的DEM及提取的坡度结果分别同深层残差网络法的结果进行对比,结果表明,3种方法DEM结果的差值平均值分别为0.41、0.34、0.34 m,RMSE分别为0.5945、0.5715、0.4869 m;坡度结果的差值平均值分别为3.02°、2.04°、1.99°,RMSE分别为3.6498°、3.1360°、2.7387°;处理时间分别为0.052、663.39、2.16 s。研究表明,对于10、20、40 m的DEM,本文方法在空间分布和误差方面优于其他方法,在耗时效率上也优于稀疏混合估计法,适合应用于梯田等地形复杂的区域进行超分辨率重构。 展开更多
关键词 山区 数字高程模型 超分辨率重构 坡度 深层残差卷积神经网络
在线阅读 下载PDF
基于深度残差收缩注意力网络的雷达信号识别方法 被引量:4
3
作者 曹鹏宇 杨承志 +2 位作者 陈泽盛 王露 石礼盟 《系统工程与电子技术》 EI CSCD 北大核心 2023年第3期717-725,共9页
针对低信噪比条件下雷达信号识别率低,以及分类网络不具备识别样本库新添加信号类型的局限,提出了一种基于深度残差收缩注意力网络的雷达信号识别方法。通过网络将一维雷达信号映射到32维向量空间。网络中的残差连接能有效强化特征的传... 针对低信噪比条件下雷达信号识别率低,以及分类网络不具备识别样本库新添加信号类型的局限,提出了一种基于深度残差收缩注意力网络的雷达信号识别方法。通过网络将一维雷达信号映射到32维向量空间。网络中的残差连接能有效强化特征的传播能力,解决网络过深无法训练的问题;注意力机制的引入,不仅构建掩码支路充当主干支路的特征选择器,还能够帮助网络自适应地选择合适的阈值进行软阈值化,从而减少网络中噪声或者冗余信息的影响,提高网络对噪声的鲁棒性。训练过程中排序表损失(ranked list loss,RLL)和分类损失函数共同指导网络训练。RLL能够有效克服传统度量学习损失函数忽略类内特征的问题,分类损失函数能够弥补度量损失优化下对样本整体分布不敏感的问题。实验表明,该方法在提高低信噪比雷达信号识别准确率的同时仍具有识别样本库新添加信号类型的能力。 展开更多
关键词 雷达信号识别 深层残差收缩注意力网络 软阈值化 注意力机制 损失函数
在线阅读 下载PDF
深度迁移学习在高光谱图像分类中的运用 被引量:18
4
作者 王立伟 李吉明 +1 位作者 周国民 杨东勇 《计算机工程与应用》 CSCD 北大核心 2019年第5期181-186,共6页
针对高光谱图像分类中,样本空间特征利用不足的问题。将深层残差网络作为特征提取器运用到高光谱图像分类中,利用深层残差网络更深的网络结构,挖掘样本邻域空间中的深层特征,实验证明此特征具有更好的可分性。同时,针对深层卷积网络有... 针对高光谱图像分类中,样本空间特征利用不足的问题。将深层残差网络作为特征提取器运用到高光谱图像分类中,利用深层残差网络更深的网络结构,挖掘样本邻域空间中的深层特征,实验证明此特征具有更好的可分性。同时,针对深层卷积网络有监督训练的过程中,由于有标签样本不足导致的过拟合现象,提出基于深度迁移学习方法的训练策略,通过迁移网络在另一相关数据集中训练得到的网络浅层卷积核参数,再使用目标数据集对深层卷积核参数进行微调,提高了残差网络在少量有标签样本情况下的分类效果。 展开更多
关键词 高光谱 深层残差网络 迁移学习
在线阅读 下载PDF
基于多注意力机制的端到端滚动轴承故障诊断方法 被引量:5
5
作者 李俊 苏凯 +1 位作者 张皓光 王强 《空军工程大学学报》 CSCD 北大核心 2023年第4期28-34,共7页
针对传统滚动轴承故障诊断中复杂的特征提取问题,利用深层残差网络能够增强诊断模型非线性表征能力的特点,通过引入通道注意力与空间注意力机制,提出一种基于多注意力机制端到端的滚动轴承智能故障诊断方法。首先,通过原始振动加速度信... 针对传统滚动轴承故障诊断中复杂的特征提取问题,利用深层残差网络能够增强诊断模型非线性表征能力的特点,通过引入通道注意力与空间注意力机制,提出一种基于多注意力机制端到端的滚动轴承智能故障诊断方法。首先,通过原始振动加速度信号经过积分运算得到速度和位移;然后,将3者组合成具有特征增强的图像,输入至结合了多注意力机制的深层残差网络实现特征提取;最后,利用多分类函数完成滚动轴承故障分类。在本地实验室轴承数据集上进行了验证,结果表明,所提方法的诊断准确率达到了97.50%。验证了基于多注意力机制端到端的滚动轴承智能故障诊断方法的可行性和有效性,可为滚动轴承的精确故障诊断提供支持。 展开更多
关键词 滚动轴承 深度学习 注意力机制 深层残差网络 故障诊断
在线阅读 下载PDF
基于改进YOLOv3的田间复杂环境下菠萝拾捡识别研究 被引量:11
6
作者 张星 高巧明 +1 位作者 潘栋 张伟伟 《中国农机化学报》 北大核心 2021年第1期201-206,共6页
为实现果实拾捡机器人在光照不均、菠萝与周围环境的颜色相似性及果实间的遮挡和重叠等田间复杂环境下对单类别菠萝的快速准确识别,提出采用深度学习下的深层残差网络改进YOLOv3卷积神经网络结构,通过单个卷积神经网络遍历整个图像,回... 为实现果实拾捡机器人在光照不均、菠萝与周围环境的颜色相似性及果实间的遮挡和重叠等田间复杂环境下对单类别菠萝的快速准确识别,提出采用深度学习下的深层残差网络改进YOLOv3卷积神经网络结构,通过单个卷积神经网络遍历整个图像,回归果实的位置,将改进的YOLOv3的3个尺度检测分别融合相同尺度模块特征层的信息,在保证识别准确率的情况下,采用多尺度融合训练网络实现田间复杂环境下端对端的单类别菠萝果实检测。最后,对改进的算法进行性能评价与对比试验,结果表明,该算法的检测识别率达到95%左右,较原始方法检测性能提升的同时,检测速度满足实时性要求,该研究为拾捡果实机器人在复杂环境下提高识别菠萝果实的工作效率和环境适应性提供理论基础。 展开更多
关键词 果实拾捡机器人 田间复杂环境 单类别果实识别 深度学习 深层残差网络 多尺度融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部