期刊文献+
共找到418篇文章
< 1 2 21 >
每页显示 20 50 100
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
1
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
基于一维残差卷积神经网络的Pi2脉动识别模型 被引量:1
2
作者 张怡悦 邹自明 方少峰 《空间科学学报》 北大核心 2025年第1期66-81,共16页
Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,... Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,如何有效地判断某段地磁场分量观测数据中是否有Pi2脉动发生,是构建Pi2脉动识别模型的关键.利用子午工程磁通门磁力仪观测的地磁场分量数据,基于一维残差卷积神经网络(One-Dimensional Residual Convolutional Neural Network,1D-ResCNN),构建了一个端到端的Pi2脉动识别模型,用于判别某段地磁场分量观测数据中是否有Pi2脉动发生.实验结果表明,该模型与现有公开发表的Pi2脉动机器学习识别模型相比,具有更高的识别准确率和更低的虚报率、漏报率. 展开更多
关键词 Pi2脉动 Pi2脉动识别模型 一维残差卷积神经网络
在线阅读 下载PDF
基于卷积神经网络的线结构光高精度三维测量方法
3
作者 叶涛 何威燃 +2 位作者 刘国鹏 欧阳煜 王斌 《仪器仪表学报》 北大核心 2025年第2期183-195,共13页
线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精... 线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精度下降,进而影响整体三维测量的精度和鲁棒性。针对上述问题,提出了一种基于卷积神经网络的鲁棒三维测量方法。首先,设计了一种创新性的残差U型块特征金字塔网络(RSU-FPN),旨在实现背景噪声的干扰抑制和结构光条纹区域中心的高精度鲁棒提取。其次,构建了一种新型的线结构光视觉传感器,并提出了一种分离式测量模型,成功将摄像机标定与光平面标定解耦,极大地提高了系统的灵活性与扩展性。通过这种解耦的标定方式,避免了传统标定方法中存在的耦合问题,使得整个测量系统更加高效且易于调整。实验结果表明,所提出的基于卷积神经网络的鲁棒三维测量方法,在复杂背景下能够实现结构光条纹中心的高精度提取,利用提取出的光条纹中心进行标定,其均方根误差分别为x方向0.005 mm、y方向0.009 mm以及z方向0.097 mm。并且,该方法在不同表面类型(如漫反射表面和光滑反射表面)上均能实现高精度的三维重建,验证了其在实际应用中的优越性和强大的鲁棒性。 展开更多
关键词 线结构光 三维测量 卷积神经网络 残差U型块特征金字塔网络 背景噪声抑制
在线阅读 下载PDF
融合多层次卷积神经网络的知识图谱嵌入模型 被引量:1
4
作者 李敏 李学俊 廖竞 《计算机工程与应用》 北大核心 2025年第6期192-198,共7页
知识图谱嵌入将实体和关系投影到连续的低维嵌入空间中来学习三元组特征。基于翻译类的模型无法提取深层知识且特征表达能力有限,基于神经网络的模型虽然能提取出深层知识但容易丢失浅层知识,并且对于实体和关系间的特征交互能力较弱。... 知识图谱嵌入将实体和关系投影到连续的低维嵌入空间中来学习三元组特征。基于翻译类的模型无法提取深层知识且特征表达能力有限,基于神经网络的模型虽然能提取出深层知识但容易丢失浅层知识,并且对于实体和关系间的特征交互能力较弱。为了在基于神经网络的模型中充分提取三元组浅层与深层特征,提出一种融合多层次卷积神经网络的知识图谱嵌入模型(ConvM),该模型使用头实体与关系交叉排列的重组嵌入方式来加强实体关系间的特征交互,并采用空洞卷积与一维、三维卷积核并列结合的特征提取模块来捕获实体关系间的多尺度交互特征,除此之外引入残差连接以改善原始信息遗忘问题。在五个公开数据集上对ConvM模型进行链接预测实验,实验结果表明,ConvM模型在FB15k、FB15k-237和Kinship数据集上的MRR指标相比ConvE模型分别提升了23.3%、10.8%、12.2%,体现了ConvM模型优秀的特征表达能力,有效提升了链接预测性能。 展开更多
关键词 知识图谱嵌入 残差学习 卷积神经网络 链接预测
在线阅读 下载PDF
基于2D-3D卷积神经网络的情绪识别模型
5
作者 杨朋辉 杨长青 +1 位作者 刘静 崔冬 《燕山大学学报》 北大核心 2025年第1期66-73,共8页
基于脑电信号的情绪识别是人机交互的重要部分,本文将二维卷积神经网络、三维卷积神经网络、深度可分离卷积进行结合,提出一种基于2D-3D卷积神经网络(2-3DCNN)模型,从时间、空间、频率三个方面进行特征提取。在网络中引入SE-ResNet网络... 基于脑电信号的情绪识别是人机交互的重要部分,本文将二维卷积神经网络、三维卷积神经网络、深度可分离卷积进行结合,提出一种基于2D-3D卷积神经网络(2-3DCNN)模型,从时间、空间、频率三个方面进行特征提取。在网络中引入SE-ResNet网络、深度残差收缩网络和Xception网络,挖掘脑电信号中更能显著反映情感变化的空间、时间和频率信息。本文在DEAP公共情感数据集上做性能测试,结果表明,2-3DCNN在唤醒度和效价的两个分类任务上的识别准确率分别达到了97.59%和97.21%,比目前最先进的模型分别高出2.36%和1.34%。 展开更多
关键词 情绪识别 脑电信号 卷积神经网络 深度残差收缩网络 深度可分离卷积
在线阅读 下载PDF
基于卷积神经网络的太阳光谱辐照度超分辨率重建方法
6
作者 张鹏 翁建文 +1 位作者 康晴 李健军 《光子学报》 北大核心 2025年第3期221-230,共10页
针对现有天基参考太阳光谱辐照度数据分辨率不足,限制其应用范围的问题,提出一种基于卷积神经网络的太阳光谱辐照度超分辨率重建方法。该网络由一个基于物理模型的全连通层、一维卷积层、非线性层和一系列具有跳跃连接的残差网络组成。... 针对现有天基参考太阳光谱辐照度数据分辨率不足,限制其应用范围的问题,提出一种基于卷积神经网络的太阳光谱辐照度超分辨率重建方法。该网络由一个基于物理模型的全连通层、一维卷积层、非线性层和一系列具有跳跃连接的残差网络组成。同时考虑现有均方误差损失函数无法捕捉太阳光谱峰谷特征的问题,提出将光谱相对于波长的一阶、二阶导数加入损失函数,使残差的特征更集中于关键的光谱内容。将所提方法应用于TSIS-1 SIM测量太阳光谱辐照度可见光波段的超分辨率重建,结果表明该方法重建光谱与TSIS-1 HSRS产品的测量结果质量相当,且重建耗时仅需0.9421 s,可有效提高天基观测太阳光谱辐照度数据的分辨率。 展开更多
关键词 高分辨率 太阳光谱辐照度 卷积神经网络 残差网络 光谱超分辨率重建
在线阅读 下载PDF
基于一维卷积神经网络的雷达个体识别算法
7
作者 杨孟璋 农丽萍 +1 位作者 李然 王俊义 《计算机工程与设计》 北大核心 2025年第5期1281-1288,共8页
为解决利用长序列雷达信号对雷达辐射源个体进行分类识别的问题,提出一种融合注意力机制和残差的一维卷积深度神经网络(1CDNN)模型,利用一维卷积从原始长序列雷达信号中直接提取特征,减少模型的参数量。引入注意力机制帮助模型学习利用... 为解决利用长序列雷达信号对雷达辐射源个体进行分类识别的问题,提出一种融合注意力机制和残差的一维卷积深度神经网络(1CDNN)模型,利用一维卷积从原始长序列雷达信号中直接提取特征,减少模型的参数量。引入注意力机制帮助模型学习利用全局信息选择关键特征,提高模型的分类识别精度。引入残差使得模型在缓解梯度消失的同时更容易进行优化和训练。实验结果表明,所提模型在实际采集数据集上具有结构简单、训练难度低、分类识别精度高和收敛速度快的优点。 展开更多
关键词 雷达辐射源识别 长序列雷达信号 深度学习 端到端 一维卷积神经网络 注意力机制 残差学习
在线阅读 下载PDF
融合卷积神经网络与线性回归的带式输送机托辊故障音频识别方法
8
作者 陈湘源 秦伟 +1 位作者 刘晏驰 罗明华 《煤炭科学技术》 北大核心 2025年第S1期389-398,共10页
针对煤矿井下带式输送机托辊故障音频识别中存在的声源复杂、特征不显著等问题,提出一种融合卷积神经网络与线性回归的托辊故障音频识别方法。首先通过带式输送机巡检机器人搭载的MEMS拾音器采集托辊沿线音频信号,基于小波自相关去噪技... 针对煤矿井下带式输送机托辊故障音频识别中存在的声源复杂、特征不显著等问题,提出一种融合卷积神经网络与线性回归的托辊故障音频识别方法。首先通过带式输送机巡检机器人搭载的MEMS拾音器采集托辊沿线音频信号,基于小波自相关去噪技术对声音进行预处理,抑制音频信号中的背景噪声信号,优化数据质量。其次利用声纹谱分离技术,采用HPSS(谐波冲击波源分离)方法分离出谐波、冲击波分量,增强托辊故障声音信号特征;基于MFCC(梅尔频率倒谱系数)声纹特征提取方法,解析出谐波-冲击波中托辊声纹特征信息,生成声谱图,提升托辊故障声纹表征能力。最后以声谱图与声品质特征为数据源,融合故障多模态特征,丰富数据维度,基于残差卷积神经网络结构计算图像特征,多元线性回归快速拟合音频基本特征,生成融合卷积神经网络与线性回归的托辊故障音频识别模型进行联合训练,通过Focal Loss损失函数优化模型训练的样本权重,提高模型对托辊故障识别的准确率。用该方法对国能榆林郭家湾煤矿实际采集的带式输送机故障托辊音频信息进行分析验证,结果表明:托辊故障检出率达到95.79%,检出准确率达到95.60%。 展开更多
关键词 托辊故障 音频识别 声纹特征 声谱图 残差卷积神经网络 多元线性回归
在线阅读 下载PDF
一种基于神经网络的航磁数据噪声识别和抑制方法 被引量:1
9
作者 冯进凯 李姗姗 +3 位作者 何兆超 范昊鹏 李新星 范雕 《中国惯性技术学报》 北大核心 2025年第1期18-26,共9页
航空磁力测量极易受到外界因素的干扰,噪声抑制是航磁数据处理中的关键一环。为高效识别和抑制航磁测线中存在的随机噪声,提高航磁测量精度,将神经网路方法引入到航磁测线数据的处理中,搭建了涵盖磁测数据噪声识别和噪声抑制的网络,并... 航空磁力测量极易受到外界因素的干扰,噪声抑制是航磁数据处理中的关键一环。为高效识别和抑制航磁测线中存在的随机噪声,提高航磁测量精度,将神经网路方法引入到航磁测线数据的处理中,搭建了涵盖磁测数据噪声识别和噪声抑制的网络,并提出了一套适配于该网络的数据处理流程。仿真实验表明,所搭建的模型可以实现航磁测线的噪声识别和抑制,模型对验证集中的三种类型的含噪测线识别准确率达到99.85%;针对于不同类型的测线数据,噪声抑制效果相比于传统的中值滤波方法、小波滤波方法和经验模态分解方法均有不同程度的提升。实测数据实验表明,模型对航磁测线的噪声识别率为97.78%,而且能够适配实测数据中的各种噪声类别并达到较好的去噪效果,模型不受输入测线长度限制,使用更加方便灵活。 展开更多
关键词 卷积神经网络 残差卷积神经网络 STFT转换 噪声识别 航磁信号去噪
在线阅读 下载PDF
基于改进卷积神经网络和射频指纹的无人机检测与识别 被引量:1
10
作者 周景贤 李希娜 《计算机应用》 CSCD 北大核心 2024年第3期876-882,共7页
针对无人机(UAV)在图像识别时易受环境干扰,而传统信号识别难以准确提取特征且实时性较差的问题,提出一种基于改进卷积神经网络(CNN)和射频(RF)指纹的无人机检测识别方法。首先,使用通用软件无线电外设(USRP)捕获环境中的无线电信号,经... 针对无人机(UAV)在图像识别时易受环境干扰,而传统信号识别难以准确提取特征且实时性较差的问题,提出一种基于改进卷积神经网络(CNN)和射频(RF)指纹的无人机检测识别方法。首先,使用通用软件无线电外设(USRP)捕获环境中的无线电信号,经过多分辨率分析获取偏差值,检测是否为无人机射频信号;其次,将检测到的无人机射频信号经过小波变换和主成分分析(PCA)处理,获得射频信号频谱,作为神经网络的输入;最后,构建轻量级残差神经网络(LRCNN),输入射频频谱进行网络训练,进行无人机的分类识别。实验结果表明,所提方法可以有效检测并识别无人机信号,平均识别精度可达84%;在信噪比(SNR)大于20 dB时,LRCNN的识别精度达到了88%,相较于支持向量机(SVM)、原始OracleCNN分别提高31和7个百分点,在识别精度和鲁棒性方面比这两种方法均有所提升。 展开更多
关键词 无人机安全 射频指纹 小波变换 注意力残差网络 卷积神经网络
在线阅读 下载PDF
基于深度可分离卷积神经网络的轴承故障诊断模型 被引量:3
11
作者 金钰森 丁飞 +2 位作者 陈竺 郑雁鹏 黄伟韬 《无线电通信技术》 北大核心 2024年第1期193-202,共10页
在现实工业环境中需要对设备故障做出快速准确的诊断,低时延和高准确度的要求使得传统卷积神经网络(Convolutional Neural Network, CNN)在故障诊断过程中受到严重制约。针对此问题,提出了一种基于深度可分离卷积神经网络(Separable Con... 在现实工业环境中需要对设备故障做出快速准确的诊断,低时延和高准确度的要求使得传统卷积神经网络(Convolutional Neural Network, CNN)在故障诊断过程中受到严重制约。针对此问题,提出了一种基于深度可分离卷积神经网络(Separable Convolutional Neural Network, SCNN)的轴承故障诊断模型,构建能够处理连续振动信号的主干CNN,通过对主干CNN中的卷积层进行可分离处理来构建SCNN,实现卷积过程的通道和区域的分离,减少卷积计算过程中所需的参数,从而降低计算时延;为SCNN引入残差层,通过残差连接来保证卷积迭代计算的准确率,避免网络层数过多而造成过拟合。为了对比所构建模型的有效性,将传统的VGG16和ResNet50网络进行一维重构来进行验证,并对分类处理后的CWRU故障轴承数据进行分析。结果显示该模型在保证识别准确率的同时有效地提高了故障诊断的效率。 展开更多
关键词 故障诊断 滚动轴承 残差神经网络 可分离卷积神经网络
在线阅读 下载PDF
基于分数阶傅里叶变换与卷积神经网络的工业过程故障检测 被引量:3
12
作者 李元 辛梦媛 《电子测量技术》 北大核心 2024年第2期1-8,共8页
基于传统数据驱动的过程故障检测存在忽略正常数据与故障数据之间微小差异和检测不灵敏问题,本文提出了一种基于FRFT和CNN结合的故障检测方法。从放大正常数据与故障数据之间的微小差异方面入手,一则利用CVDA构造残差矩阵用于数据监测,... 基于传统数据驱动的过程故障检测存在忽略正常数据与故障数据之间微小差异和检测不灵敏问题,本文提出了一种基于FRFT和CNN结合的故障检测方法。从放大正常数据与故障数据之间的微小差异方面入手,一则利用CVDA构造残差矩阵用于数据监测,增强灵敏度;二则利用FRFT对数据进行变换,将一些幅值低,易被噪声掩盖的故障从时域转换为频域,尽可能放大其特征,使其易检测。最后利用CNN对处理完的数据进行检测,解决了忽略微小差异和检测灵敏度低的问题,通过TE过程进行实验验证,在故障检测率方面得到提高,表明所提方法的有效性。 展开更多
关键词 规范残差变量分析 分数阶傅里叶 卷积神经网络 故障检测
在线阅读 下载PDF
基于深层卷积神经网络的初生仔猪目标实时检测方法 被引量:28
13
作者 沈明霞 太猛 +3 位作者 CEDRIC Okinda 刘龙申 李嘉位 孙玉文 《农业机械学报》 EI CAS CSCD 北大核心 2019年第8期270-279,共10页
针对初生仔猪目标较小、分娩栏内光线变化复杂、仔猪粘连和硬性遮挡现象较为严重等问题,提出一种基于深层卷积神经网络的初生仔猪目标识别方法。将分类和定位合并为一个任务,以整幅图像为兴趣域,利用特征金字塔网络(Feature pyramid net... 针对初生仔猪目标较小、分娩栏内光线变化复杂、仔猪粘连和硬性遮挡现象较为严重等问题,提出一种基于深层卷积神经网络的初生仔猪目标识别方法。将分类和定位合并为一个任务,以整幅图像为兴趣域,利用特征金字塔网络(Feature pyramid network,FPN)算法定位识别仔猪目标;对比了不同通道数数据集以及不同迭代次数对模型效果的影响;该方法支持图像批量处理、视频与监控录像的实时检测和检测结果多样化储存。实验结果表明:在数据集总量相同时,同时包含夜间单通道和白天3通道的数据集,在迭代20 000次时接近模型最优值。模型在验证集和测试集上的精确率分别为95.76%和93.84%,召回率分别为95.47%和94.88%,对分辨率为500像素×375像素的图像检测速度为53.19 f/s,对清晰度为720 P的视频检测速度为22 f/s,可满足实时检测的要求,对全天候多干扰场景表现出良好的泛化能力。 展开更多
关键词 初生仔猪 实时检测 深层卷积神经网络 FPN算法
在线阅读 下载PDF
面向农作物病害识别的高阶残差卷积神经网络研究 被引量:11
14
作者 曾伟辉 李淼 +3 位作者 张健 黄小平 王敬贤 袁媛 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第10期781-790,共10页
当前研究农作物病害的准确识别工作中,针对简单背景的农作物病害图像识别取得了巨大成功,但当面向包含有各种噪声和复杂背景真实场景的农作物病害图像识别问题时,难以满足识别准确率的要求.为此提出了一种新的面向农作物病害识别应用的... 当前研究农作物病害的准确识别工作中,针对简单背景的农作物病害图像识别取得了巨大成功,但当面向包含有各种噪声和复杂背景真实场景的农作物病害图像识别问题时,难以满足识别准确率的要求.为此提出了一种新的面向农作物病害识别应用的高阶残差卷积神经网络方法,以实现农作物病害的准确、抗干扰的识别.实验结果表明,该方法具有高准确率、强鲁棒性和良好的抗干扰能力,能较好地满足农作物病害识别的实际应用需求. 展开更多
关键词 农作物病害识别 高阶残差 鲁棒性 卷积神经网络
在线阅读 下载PDF
一维残差卷积神经网络的刀具磨损识别方法研究 被引量:3
15
作者 杨斌 樊志刚 +2 位作者 王建国 王民 李志星 《机械科学与技术》 CSCD 北大核心 2022年第11期1746-1752,共7页
传统的机器学习方法对于刀具磨损进行监测时需要人为提取特征,并且在刀具磨损监测过程出现所需时间较长、精度低等问题。本文提出基于一维残差卷积神经网络的刀具磨损状态识别方法。对原始振动信号进行小波包阈值降噪、快速傅里叶变换... 传统的机器学习方法对于刀具磨损进行监测时需要人为提取特征,并且在刀具磨损监测过程出现所需时间较长、精度低等问题。本文提出基于一维残差卷积神经网络的刀具磨损状态识别方法。对原始振动信号进行小波包阈值降噪、快速傅里叶变换处理后,将生成的频谱数据作为残差卷积神经网络模型的输入,通过卷积连接、残差连接和融合等操作自动进行特征提取,最后与刀具磨损状态进行匹配。结果表明:与目前常用的其它神经网络相比较,本文所提出的方法在多次测试中后平均准确率提高了0.6%,训练耗时对于频谱图输入降低30%,具有流程简单、准确率更高的特点,相比于其他方法更有优势。 展开更多
关键词 振动信号 残差连接 刀具磨损 卷积神经网络
在线阅读 下载PDF
基于轻量级深层卷积神经网络的花卉图像分类系统 被引量:6
16
作者 徐光柱 朱泽群 +2 位作者 尹思璐 刘高飞 雷帮军 《数据采集与处理》 CSCD 北大核心 2021年第4期756-768,共13页
为解决深层卷积神经网络(Deep convolutional neural network,DCNN)模型在算力弱、存储成本高的AI边缘计算设备上难以高效应用的现实问题,本文利用重量级网络辅助训练轻量级网络,设计了一种基于轻量级神经网络的花卉图像分类系统。首先... 为解决深层卷积神经网络(Deep convolutional neural network,DCNN)模型在算力弱、存储成本高的AI边缘计算设备上难以高效应用的现实问题,本文利用重量级网络辅助训练轻量级网络,设计了一种基于轻量级神经网络的花卉图像分类系统。首先利用重量级DCNN并结合迁移学习、爬虫技术与最大连通区域分割方法,构建了适用于轻量级网络训练的扩充花卉数据集。然后基于Tiny⁃darknet与Darknet⁃reference两种网络及扩充后的花卉数据集训练得到两种面向弱算力设备的轻量级DCNN模型。训练得到的两种花卉分类网络在Oxford102花卉数据集上的平均分类准确率可达98.07%与98.83%,模型大小分别为4 MB与28 MB,在AI边缘计算设备中具有较好的应用前景。 展开更多
关键词 花卉图像分类 深层卷积神经网络 深度学习
在线阅读 下载PDF
全卷积多并联残差神经网络 被引量:6
17
作者 李国强 张露 《小型微型计算机系统》 CSCD 北大核心 2020年第1期30-34,共5页
随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题... 随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题,本文提出了一种改进的残差神经网络,称为全卷积多并联残差神经网络.在该网络中,每一层的特征信息不仅传输到下一层还输出到最后的平均池化层.为了测试该网络的性能,分别在三个数据集(MNIST,CIFAR-10和CIFAR-100)上对比图像分类的结果.实验结果表明,改进后的全卷积多并联残差神经网络与残差网络相比具有更高的分类准确率和更好的泛化能力. 展开更多
关键词 深度学习 残差神经网络 卷积多并联残差神经网络 图像分类
在线阅读 下载PDF
基于深层卷积神经网络和双谱特征的雷达信号识别方法 被引量:29
18
作者 刘赢 田润澜 王晓峰 《系统工程与电子技术》 EI CSCD 北大核心 2019年第9期1998-2005,共8页
针对复杂电磁环境下利用人工提取特征识别雷达信号存在的主观性强、特征冗余的问题,提出了一种基于深层卷积神经网络的识别方法。该方法首先提取雷达信号的双谱信息作为深层卷积神经网络模型的输入,然后利用模型的自学习能力提取深层特... 针对复杂电磁环境下利用人工提取特征识别雷达信号存在的主观性强、特征冗余的问题,提出了一种基于深层卷积神经网络的识别方法。该方法首先提取雷达信号的双谱信息作为深层卷积神经网络模型的输入,然后利用模型的自学习能力提取深层特征,实现对不同调制样式雷达信号的识别,最后对不同结构网络模型的识别结果进行对比。仿真实验结果表明,相比传统雷达信号识别方法,该方法对于不同调制类型信号的识别效果优异,并且在识别率、抗噪性上都有所提升。 展开更多
关键词 雷达信号识别 深层卷积神经网络 特征提取 双谱
在线阅读 下载PDF
基于残差混合注意力机制的脑部CT图像分类卷积神经网络模型 被引量:19
19
作者 乔思波 庞善臣 +3 位作者 王敏 翟雪 于世行 丁桐 《电子学报》 EI CAS CSCD 北大核心 2021年第5期984-991,共8页
针对阿尔兹海默症、病变(如脑肿瘤)和健康老化的3类脑部CT图像分类问题,本文提出了一种改进的ResNet-10卷积神经网络模型.该模型在网络的残差映射结构中加入残差混合注意力模块,解决了原模型提取的特征分辨性弱的问题,精确捕捉了脑部组... 针对阿尔兹海默症、病变(如脑肿瘤)和健康老化的3类脑部CT图像分类问题,本文提出了一种改进的ResNet-10卷积神经网络模型.该模型在网络的残差映射结构中加入残差混合注意力模块,解决了原模型提取的特征分辨性弱的问题,精确捕捉了脑部组织在CT图像中的位置和内容信息;此外,本文设计了全局平均池化层,简化了模型的复杂度,并在其后引入Dropout机制,缓解了过拟合.在训练阶段,该模型建立了标签平滑交叉熵损失函数,使模型在样本数量有限的情况下仍有较强的泛化能力.系列实验证明了改进后的ResNet-10网络模型在分类脑部CT图像时达到97.47%的分类精度. 展开更多
关键词 残差混合注意力模块 标签平滑 脑部CT 卷积神经网络
在线阅读 下载PDF
基于深层卷积神经网络的电工钢片矢量磁特性模拟 被引量:5
20
作者 董纪兴 张殿海 +1 位作者 任自艳 张艳丽 《高压电器》 CAS CSCD 北大核心 2021年第4期28-33,共6页
针对传统基于BP神经网络磁滞模型收敛速度慢、建模过程需要对磁特性的表征参数进行复杂的人工提取等问题,提出了一种基于深层卷积神经网络的电工钢片矢量磁滞特性模拟的方法,该模型将磁通密度的时间序列数据和磁场强度的幅值和相位作为... 针对传统基于BP神经网络磁滞模型收敛速度慢、建模过程需要对磁特性的表征参数进行复杂的人工提取等问题,提出了一种基于深层卷积神经网络的电工钢片矢量磁滞特性模拟的方法,该模型将磁通密度的时间序列数据和磁场强度的幅值和相位作为卷积神经网络的训练数据,利用残差模块提高卷积神经网络的收敛速度。改进模型既可以避免传统磁滞模型中繁杂的人工特征提取的过程,也可拓展应用于特征参数不易提取的非正弦激励下磁滞模型的建立。通过对比不同网络结构的磁滞模型,改进的深层卷积网络磁滞模型既能减少迭代次数,又能保证磁滞特性模拟的精细性。 展开更多
关键词 矢量磁滞模型 电工钢片 卷积神经网络 残差模块
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部