期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
基于二维卷积神经网络的城市暴雨内涝积水模拟预报研究
1
作者 柴永丰 陈敏 +4 位作者 郝彦龙 肖家清 邓蔚珂 吕凯 师鹏飞 《水文》 北大核心 2025年第3期17-24,共8页
城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立... 城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立时空数据(降雨和地形)驱动的基于二维卷积神经网络的城市内涝积水预测模型,实现研究区全域网格的逐时段模拟。结果表明,模型对积水时空预测性能表现优异,卡帕系数等空间性能指标高于0.80,且半数指标高于0.95,大部分积水点积水深时间序列纳什效率系数为0.80~0.99。相较物理过程模型,训练(率定)和预测效率分别提升77.7倍、285.2倍。研究成果可为城市内涝实时预报、即时预警、快速推演提供技术参考。 展开更多
关键词 城市内涝模拟 二维卷积神经网络(2dcnn) 机器学习 时空特征 快速预报
在线阅读 下载PDF
三维卷积神经网络方法改进及其应用综述 被引量:1
2
作者 李泽慧 张琳 山显英 《计算机工程与应用》 北大核心 2025年第3期48-61,共14页
三维卷积神经网络作为一种深度神经网络,在计算机视觉领域,特别是视频动作识别方面展现了优异的效果。然而三维卷积神经网络仍存在一些问题,针对这些问题,对现有的基于三维卷积的视频动作识别改进方法进行了总结和分析。在轻量化、特征... 三维卷积神经网络作为一种深度神经网络,在计算机视觉领域,特别是视频动作识别方面展现了优异的效果。然而三维卷积神经网络仍存在一些问题,针对这些问题,对现有的基于三维卷积的视频动作识别改进方法进行了总结和分析。在轻量化、特征提取、计算效率、组合模型等方面对三维卷积神经网络的改进进行归纳,并介绍了三维卷积神经网络的实际应用,总结了流行的数据集,并对这些改进方法的实验结果进行了比较和分析。展望了视频动作识别未来的发展方向。 展开更多
关键词 三维卷积神经网络(3dcnn) 行为识别 深度学习
在线阅读 下载PDF
基于深层卷积神经网络的初生仔猪目标实时检测方法 被引量:28
3
作者 沈明霞 太猛 +3 位作者 CEDRIC Okinda 刘龙申 李嘉位 孙玉文 《农业机械学报》 EI CAS CSCD 北大核心 2019年第8期270-279,共10页
针对初生仔猪目标较小、分娩栏内光线变化复杂、仔猪粘连和硬性遮挡现象较为严重等问题,提出一种基于深层卷积神经网络的初生仔猪目标识别方法。将分类和定位合并为一个任务,以整幅图像为兴趣域,利用特征金字塔网络(Feature pyramid net... 针对初生仔猪目标较小、分娩栏内光线变化复杂、仔猪粘连和硬性遮挡现象较为严重等问题,提出一种基于深层卷积神经网络的初生仔猪目标识别方法。将分类和定位合并为一个任务,以整幅图像为兴趣域,利用特征金字塔网络(Feature pyramid network,FPN)算法定位识别仔猪目标;对比了不同通道数数据集以及不同迭代次数对模型效果的影响;该方法支持图像批量处理、视频与监控录像的实时检测和检测结果多样化储存。实验结果表明:在数据集总量相同时,同时包含夜间单通道和白天3通道的数据集,在迭代20 000次时接近模型最优值。模型在验证集和测试集上的精确率分别为95.76%和93.84%,召回率分别为95.47%和94.88%,对分辨率为500像素×375像素的图像检测速度为53.19 f/s,对清晰度为720 P的视频检测速度为22 f/s,可满足实时检测的要求,对全天候多干扰场景表现出良好的泛化能力。 展开更多
关键词 初生仔猪 实时检测 深层卷积神经网络 FPN算法
在线阅读 下载PDF
基于轻量级深层卷积神经网络的花卉图像分类系统 被引量:7
4
作者 徐光柱 朱泽群 +2 位作者 尹思璐 刘高飞 雷帮军 《数据采集与处理》 CSCD 北大核心 2021年第4期756-768,共13页
为解决深层卷积神经网络(Deep convolutional neural network,DCNN)模型在算力弱、存储成本高的AI边缘计算设备上难以高效应用的现实问题,本文利用重量级网络辅助训练轻量级网络,设计了一种基于轻量级神经网络的花卉图像分类系统。首先... 为解决深层卷积神经网络(Deep convolutional neural network,DCNN)模型在算力弱、存储成本高的AI边缘计算设备上难以高效应用的现实问题,本文利用重量级网络辅助训练轻量级网络,设计了一种基于轻量级神经网络的花卉图像分类系统。首先利用重量级DCNN并结合迁移学习、爬虫技术与最大连通区域分割方法,构建了适用于轻量级网络训练的扩充花卉数据集。然后基于Tiny⁃darknet与Darknet⁃reference两种网络及扩充后的花卉数据集训练得到两种面向弱算力设备的轻量级DCNN模型。训练得到的两种花卉分类网络在Oxford102花卉数据集上的平均分类准确率可达98.07%与98.83%,模型大小分别为4 MB与28 MB,在AI边缘计算设备中具有较好的应用前景。 展开更多
关键词 花卉图像分类 深层卷积神经网络 深度学习
在线阅读 下载PDF
基于深层卷积神经网络和双谱特征的雷达信号识别方法 被引量:29
5
作者 刘赢 田润澜 王晓峰 《系统工程与电子技术》 EI CSCD 北大核心 2019年第9期1998-2005,共8页
针对复杂电磁环境下利用人工提取特征识别雷达信号存在的主观性强、特征冗余的问题,提出了一种基于深层卷积神经网络的识别方法。该方法首先提取雷达信号的双谱信息作为深层卷积神经网络模型的输入,然后利用模型的自学习能力提取深层特... 针对复杂电磁环境下利用人工提取特征识别雷达信号存在的主观性强、特征冗余的问题,提出了一种基于深层卷积神经网络的识别方法。该方法首先提取雷达信号的双谱信息作为深层卷积神经网络模型的输入,然后利用模型的自学习能力提取深层特征,实现对不同调制样式雷达信号的识别,最后对不同结构网络模型的识别结果进行对比。仿真实验结果表明,相比传统雷达信号识别方法,该方法对于不同调制类型信号的识别效果优异,并且在识别率、抗噪性上都有所提升。 展开更多
关键词 雷达信号识别 深层卷积神经网络 特征提取 双谱
在线阅读 下载PDF
基于深层卷积神经网络近视性黄斑病变筛查系统的研究
6
作者 史春生 刘磊 +1 位作者 王亚茹 王泽飞 《中华实验眼科杂志》 CAS CSCD 北大核心 2021年第7期602-608,共7页
目的研究一种基于深层卷积神经网络(DCNN)全自动近视性黄斑病变(MMD)筛查及其严重程度评估系统。方法收集安徽省第二人民医院6068张眼底图像构建训练集,并选取公开的眼底图像数据集构建测试集。对眼底图像进行预处理及扩增、MMD病变等... 目的研究一种基于深层卷积神经网络(DCNN)全自动近视性黄斑病变(MMD)筛查及其严重程度评估系统。方法收集安徽省第二人民医院6068张眼底图像构建训练集,并选取公开的眼底图像数据集构建测试集。对眼底图像进行预处理及扩增、MMD病变等级标注、数据清洗。构建全自动MMD筛查系统,该系统由两级网络结构组成,第一级网络结构用于识别MMD是否存在,第二级网络结构用于判断MMD病变的严重等级。比较VGG-16、ResNet50、Inception-v3和Densenet这4种常用的DCNN方法在MMD筛查及严重程度识别任务中的准确率、特异性、敏感度、精确率、F1值、曲线下面积(AUC)、Kappa系数性能。结果Densenet网络模型在MMD筛查任务中表现最优,其敏感度、特异性、精确率、F1值和AUC分别为0.898、0.918、0.919、0.908和0.962。Inception-v3网络模型在MMD严重程度识别任务中表现最优,其敏感度、特异性、精确率、F1值和AUC分别为0.839、0.952、0.952、0.892和0.965。可视化结果显示,本研究所采用的网络结构模型可自动学习MMD严重等级判断的临床特征,准确识别弥漫性和局灶性脉络膜萎缩区域。结论基于DCNN的眼底图像MMD筛查方法可自动化提取MMD的有效特征,并准确进行MMD筛查及其严重等级判断,可有效辅助临床。 展开更多
关键词 近视性黄斑病变 深层卷积神经网络 筛查 人工智能
在线阅读 下载PDF
深度卷积神经网络在心音分类方法中的应用 被引量:4
7
作者 陈伟 孙强 +1 位作者 齐月月 徐晨 《计算机工程与应用》 CSCD 北大核心 2021年第16期182-189,共8页
通过分析心音信号对心脏早期的病理状态进行确诊具有重要的意义。提出了一种基于深度卷积神经网络的心音分类方法。将心音信号转化成具有时频特性的梅尔频谱系数(Mel Frequency Spectral Coefficient,MFSC)特征图,将其作为深度卷积神经... 通过分析心音信号对心脏早期的病理状态进行确诊具有重要的意义。提出了一种基于深度卷积神经网络的心音分类方法。将心音信号转化成具有时频特性的梅尔频谱系数(Mel Frequency Spectral Coefficient,MFSC)特征图,将其作为深度卷积神经网络模型的输入;利用深度卷积神经网络对MFSC特征图进行训练,引入中心损失函数建立最优的深度学习模型;测试阶段,先将心音信号转换成多张二维MFSC特征图,然后利用训练好的深度学习模型对其分类,最后利用多数表决原则判断心音信号的类别。针对人工标注的训练样本有限,导致模型训练正确率不高的问题,以心音的二维MFSC特征图为对象分别从时间域和频率域进行随机屏蔽处理进而扩充训练样本。实验结果表明,该方法在PASCAL心音数据集上进行测试,对正常、杂音、早搏三种心音的分类性能明显优于现有最好的方法。 展开更多
关键词 心音分类 深度卷积神经网络(dcnn) 数据扩充
在线阅读 下载PDF
基于物联网和深度卷积神经网络的冬枣病害识别方法 被引量:11
8
作者 张善文 黄文准 尤著宏 《浙江农业学报》 CSCD 北大核心 2017年第11期1868-1874,共7页
针对传统的作物病害识别方法中人为提取的分类特征,对复杂作物病害图像的形状、光照和背景比较敏感等问题,提出一种基于物联网和深度卷积神经网络(DCNN)的冬枣病害识别方法。DCNN由1个输入层、4个卷积层、3个下采样层、1个全连接层和1... 针对传统的作物病害识别方法中人为提取的分类特征,对复杂作物病害图像的形状、光照和背景比较敏感等问题,提出一种基于物联网和深度卷积神经网络(DCNN)的冬枣病害识别方法。DCNN由1个输入层、4个卷积层、3个下采样层、1个全连接层和1个输出层组成。利用该方法能够提取冬枣病害图像的有效特征,并识别病害类型,避免了传统作物病害识别方法中繁琐的特征提取过程。在4种冬枣病害果实数据库上进行了冬枣病害识别实验,识别率达到92%以上。试验结果表明,该方法适合利用物联网采集的大规模视频病害图像进行冬枣病害识别。 展开更多
关键词 冬枣病害识别 冬枣病害图像 深度卷积神经网络(dcnn) 特征提取
在线阅读 下载PDF
基于神经网络的二元混合液体自燃温度预测
9
作者 胡双启 郭丙宇 +1 位作者 程泽会 吴薇 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1710-1716,共7页
自燃温度(Auto-Ignition Temperature,AIT)是防火防爆安全设计的关键临界参数之一。为解决目前多数采用试验方法测量混合物AIT费时费力且有一定危险性的问题,运用定量结构性质关系方法,使用反向传播神经网络(Back Propagation Neural Ne... 自燃温度(Auto-Ignition Temperature,AIT)是防火防爆安全设计的关键临界参数之一。为解决目前多数采用试验方法测量混合物AIT费时费力且有一定危险性的问题,运用定量结构性质关系方法,使用反向传播神经网络(Back Propagation Neural Network,BPNN)和一维卷积神经网络(one-Dimensional Convolutional Neural Network,1DCNN)技术建立二元混合液体AIT预测模型。以二元混合液体的分子描述符为输入、试验测得的AIT为输出,经多种方法对模型的拟合性、稳定性和预测能力评价验证。结果表明,BPNN模型和1DCNN模型均有良好的预测能力,其均方根误差分别为4.780℃和9.603℃,拟合度与5折交叉验证拟合度差值分别为0.058和0.040,表明BPNN模型有更好的拟合能力,1DCNN模型有良好的稳定性。 展开更多
关键词 安全工程 反传播神经网络(BPNN) 一维卷积神经网络(1dcnn) 二元混合液体 自燃温度
在线阅读 下载PDF
基于多尺度深度卷积神经网络的故障诊断方法 被引量:34
10
作者 卞景艺 刘秀丽 +1 位作者 徐小力 吴国新 《振动与冲击》 EI CSCD 北大核心 2021年第18期204-211,共8页
针对机电装备故障诊断需要大量专家经验、故障特征识别困难的问题,在一维深度卷积神经网络基础上进行改进,构建多尺度一维深度卷积神经网络(M1DCNN),提出基于多尺度一维深度卷积神经网络的故障诊断方法:首先在网络输入层构建多个含有不... 针对机电装备故障诊断需要大量专家经验、故障特征识别困难的问题,在一维深度卷积神经网络基础上进行改进,构建多尺度一维深度卷积神经网络(M1DCNN),提出基于多尺度一维深度卷积神经网络的故障诊断方法:首先在网络输入层构建多个含有不同尺寸卷积核通道的特征提取层,对一维时序信号中故障特征进行多尺度特征提取,丰富智能体诊断信息,将所提取特征通过输入到包含多尺寸卷积核以及多样池化层中进行特征处理,最后合并多通道所处理的特征,使网络完成自我学习,从而实现故障诊断。将该方法应用到西储大学轴承故障数据及行星齿轮箱的故障数据诊断实验,结果表明该方法具有诊断精度高、鲁棒性强的特点,相较于一维卷积神经网络准确率提高1.25%,与反向传播神经网络、循环神经网络相比准确率平均提高3%以上,对网络特征提取效果进行可视化分析,结果表明该方法特征提取效果与诊断精度优于一维卷积神经网络。 展开更多
关键词 深度卷积神经网络(dcnn) 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于多尺度学习与深度卷积神经网络的遥感图像土地利用分类 被引量:26
11
作者 王协 章孝灿 苏程 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2020年第6期715-723,共9页
土地利用信息是国土资源管理的基础和重要依据,随着高分辨率遥感图像数据的日益增多,迫切需要快速准确的土地利用分类方法。目前应用较广的面向对象的分类方法对空间特征的利用尚不够充分,在特征选择上存在一定的局限性。为此,提出一种... 土地利用信息是国土资源管理的基础和重要依据,随着高分辨率遥感图像数据的日益增多,迫切需要快速准确的土地利用分类方法。目前应用较广的面向对象的分类方法对空间特征的利用尚不够充分,在特征选择上存在一定的局限性。为此,提出一种基于多尺度学习与深度卷积神经网络(deep convolutional neural network,DCNN)的多尺度神经网络(multi-scale neural network,MSNet)模型,基于残差网络构建了100层编码网络,通过并行输入实现输入图像的多尺度学习,利用膨胀卷积实现特征图像的多尺度学习,设计了一种端到端的分类网络。以浙江省0.5 m分辨率的光学航空遥感图像为数据源进行了实验,总体分类精度达91.97%,并将其与传统全卷积网络(fully convolutional networks,FCN)方法和基于支持向量机(support vector machine,SVM)的面向对象方法进行了对比,结果表明,本文所提方法分类精度更高,分类结果整体性更强。 展开更多
关键词 高分辨率遥感图像 土地利用分类 多尺度学习 深度卷积神经网络(dcnn)
在线阅读 下载PDF
基于深度卷积神经网络与WPT-PWVD的轴承故障智能诊断 被引量:8
12
作者 黄鑫 陈仁祥 +3 位作者 杨星 张霞 黄钰 余腾伟 《振动与冲击》 EI CSCD 北大核心 2020年第16期236-243,共8页
针对轴承故障诊断中人工提取特征依赖经验,且泛化性和自适应能力弱等问题,提出一种基于深度卷积神经网络(DCNN)与WPT-PWVD的智能故障诊断新方法。①利用小波包变换(WPT)将轴承故障信号进行自适应分解以提取有效高频成分并进行重构;②利... 针对轴承故障诊断中人工提取特征依赖经验,且泛化性和自适应能力弱等问题,提出一种基于深度卷积神经网络(DCNN)与WPT-PWVD的智能故障诊断新方法。①利用小波包变换(WPT)将轴承故障信号进行自适应分解以提取有效高频成分并进行重构;②利用希尔伯特算法对重构信号做包络解调并进行伪魏格纳分布(PWVD)以得到能揭示轴承主要故障信息的时频图;③构建DCNN网络对轴承故障时频图自动学习提取故障特征,并通过在DCNN特征输出层后添加的Softmax多分类器进行网络参数微调,将特征自动学习提取与故障分类融为一体,实现轴承故障智能诊断。使用所提方法对不同工况、不同故障程度及不同故障类型的轴承进行诊断,结果证明了所提方法诊断精度高,且泛化能力强。 展开更多
关键词 深度卷积神经网络(dcnn) 小波包变换(WPT) 伪魏格纳分布(PWVD) 时频图 故障智能诊断
在线阅读 下载PDF
融合浅层特征的深度卷积神经网络互花米草遥感监测方法 被引量:9
13
作者 朱玉玲 王建步 +6 位作者 王安东 王锦锦 赵晓龙 任广波 胡亚斌 陈晓英 马毅 《海洋科学》 CAS 北大核心 2019年第7期12-22,共11页
基于2018年10月份黄河口入海两侧的LANDSAT8 OLI影像,提取植被指数和缨帽变换分量共9维光谱特征,构建融合浅层特征的8层深度卷积神经网络(deep convolutional neural network,DCNN)分类模型,开展互花米草(Spartina alterniflora Loisel... 基于2018年10月份黄河口入海两侧的LANDSAT8 OLI影像,提取植被指数和缨帽变换分量共9维光谱特征,构建融合浅层特征的8层深度卷积神经网络(deep convolutional neural network,DCNN)分类模型,开展互花米草(Spartina alterniflora Loisel)遥感监测的方法研究,并从不同的浅层特征来具体分析互花米草的监测结果。结果表明:(1)在分类方法上,DCNN模型的总体分类精度最高,达到90.33%,与支持向量机(support vector machine,SVM)、随机森林(random forest,RF)分类器相比,精度分别提高4.78%、2.7%,互花米草的生产者精度分别提高了2.56%、0.47%,说明在滨海湿地遥感影像分类中,DCNN有着更好的应用潜力;(2)融合浅层特征后,DCNN的总体分类精度和互花米草的识别精度分别提高了0.34%和3.25%,有效提高了对互花米草的监测能力。其中,融合归一化植被水分指数(NDII)浅层特征的DCNN分类方法中,互花米草的识别精度提高最多,为2.56%,比值植被指数(RVI)次之,为2.32%。研究结果可为互花米草的监测与管理提供技术与数据支撑。 展开更多
关键词 深度卷积神经网络(deep convolutional NEURAL network dcnn) 浅层特征融合 湿地分类 互花米草(Spartina alterniflora Loisel) 黄河口
在线阅读 下载PDF
卷积神经网络在复杂核素识别中的应用 被引量:12
14
作者 胡浩行 张江梅 +1 位作者 王坤朋 冯兴华 《传感器与微系统》 CSCD 2019年第10期154-156,160,共4页
针对传统核素识别方法对高本底、低探测率的复杂伽马能谱存在特征提取困难、建模复杂以及识别率低等问题,提出了一种使用卷积神经网络(CNN)进行核素识别的方法。利用CNN可自适应、隐式地提取图像特征并进行分类学习的特点,搭建多层卷积... 针对传统核素识别方法对高本底、低探测率的复杂伽马能谱存在特征提取困难、建模复杂以及识别率低等问题,提出了一种使用卷积神经网络(CNN)进行核素识别的方法。利用CNN可自适应、隐式地提取图像特征并进行分类学习的特点,搭建多层卷积神经网络的核素识别模型,通过网络模型特征提取层和分类器的训练,获取深层次的核素特征描述,实现多核素识别。基于蒙特卡洛分析软件Geant4仿真数据进行了对比分析实验,结果表明:本文提出的方法其时间复杂度为O(n^2),所提方法避免了复杂的显式特征提取过程,能够对IAEA规定的部分常见单一及混合核素实时地多核素识别。 展开更多
关键词 伽马能谱 核素识别 卷积神经网络 深层特征 自适应提取
在线阅读 下载PDF
预训练卷积神经网络模型微调的行人重识别 被引量:11
15
作者 李锦明 曲毅 +1 位作者 裴禹豪 扆泽江 《计算机工程与应用》 CSCD 北大核心 2018年第20期219-222,229,共5页
针对行人重识别中传统的人工提取的行人浅层特征因受摄像机角度、光照等外界环境的影响,鲁棒性不好,收敛速度慢的问题,研究使用预训练卷积神经网络模型在行人数据库上进行微调的方法,对行人图片进行特征提取,从而得到高维的深层行人特征... 针对行人重识别中传统的人工提取的行人浅层特征因受摄像机角度、光照等外界环境的影响,鲁棒性不好,收敛速度慢的问题,研究使用预训练卷积神经网络模型在行人数据库上进行微调的方法,对行人图片进行特征提取,从而得到高维的深层行人特征,最后通过欧氏距离进行相似性的度量。实验结果证明,深层的行人特征在平均准确度评估标准上,相比于传统的人工设计特征,分别得到了9.51%、11.12%、16.63%、16.96%的提高,收敛速度也变得更快,说明深层特征的行人识别能力更强。 展开更多
关键词 行人重识别 卷积神经网络 预训练模型 深层特征
在线阅读 下载PDF
基于卷积神经网络的图像检索算法研究 被引量:9
16
作者 牛亚茜 冀小平 《计算机工程与应用》 CSCD 北大核心 2019年第18期201-206,共6页
由于互联网+时代的到来,在线图像的数量急剧增加,基于内容的图像检索引起了很多关注。传统的检索方法由于图像表达能力不强,使得检索效率低下,不利于大规模图像检索。因此,提出一种新的基于卷积神经网络的图像检索算法。设计一种新型的... 由于互联网+时代的到来,在线图像的数量急剧增加,基于内容的图像检索引起了很多关注。传统的检索方法由于图像表达能力不强,使得检索效率低下,不利于大规模图像检索。因此,提出一种新的基于卷积神经网络的图像检索算法。设计一种新型的端到端的卷积神经网络结构,同时学习基于概率的语义信息相似性和图像特征相似性;引入主成分分析方法,对深层特征进行降维的同时降低信息的损失;通过距离函数计算目标图像与数据库图像的距离,实现检索。在Image Net-1000和Oxford 5K数据集上的实验结果表明,该方法能够有效地增强图像特征的表达能力,提高检索性能,优于对比方法。 展开更多
关键词 图像检索 卷积神经网络 主成分分析 深层特征
在线阅读 下载PDF
基于深度优化残差卷积神经网络的端到端语音识别 被引量:10
17
作者 徐冬冬 蒋志翔 《计算机应用研究》 CSCD 北大核心 2020年第S02期139-141,共3页
为增强语音识别声学模型中特征提取的鲁棒性和深层网络模型训练的有效性,提出一种采用残差结构优化深层卷积神经网络的端到端语音识别模型。该方法使用连接时序分类(connectionist temporal classification,CTC)作为目标损失函数,通过... 为增强语音识别声学模型中特征提取的鲁棒性和深层网络模型训练的有效性,提出一种采用残差结构优化深层卷积神经网络的端到端语音识别模型。该方法使用连接时序分类(connectionist temporal classification,CTC)作为目标损失函数,通过在卷积神经网络层之间添加残差跳转连接,将前层中输入直接传输到后层,构建一组残差卷积层,深化了声学模型中卷积层层数。然后在残差结构内外分别添加Swish和maxout函数,改善网络存在的退化问题和梯度消失问题,进而提升了语音识别的性能。在中文数据集AISHELL-1上进行语音识别实验。研究结果表明,与传统识别模型相比,基于深度优化残差卷积神经网络的CTC模型在语音识别任务上具有更好的性能。 展开更多
关键词 残差结构 连接时序分类 Swish激活 maxout激活 深层卷积神经网络
在线阅读 下载PDF
融合注意力机制的混合神经网络文本情感分析模型 被引量:13
18
作者 孔韦韦 田乔鑫 +2 位作者 滕金保 王照乾 常亮 《电讯技术》 北大核心 2023年第6期781-789,共9页
以往的文本情感分析模型存在忽略文本边缘信息、池化层破坏文本序列特征的问题,并且特征提取能力与识别关键信息的能力也存在不足。为了进一步提升情感分析的效果,提出了一种基于注意力机制的动态卷积神经网络(Dynamic Convolutional Ne... 以往的文本情感分析模型存在忽略文本边缘信息、池化层破坏文本序列特征的问题,并且特征提取能力与识别关键信息的能力也存在不足。为了进一步提升情感分析的效果,提出了一种基于注意力机制的动态卷积神经网络(Dynamic Convolutional Neural Network,DCNN)与双向门控循环单元(Bi-directional Gated Recurrent Unit,BiGRU)的文本情感分析模型DCNN-BiGRU-Att。首先,利用宽卷积核提取文本边缘特征,采用动态k-max池化保留了文本的相对位置序列特征。其次,构建了DCNN与BiGRU的并行混合结构,避免了部分特征损失问题,并同时保留局部特征与全局上下文信息两种特征,提高了模型的特征提取能力。最后,在特征融合之后引入注意力机制,将注意力机制的作用全局化,提高了模型识别关键信息的能力。将该模型在MR与SST-2两个公开数据集上与多个深度学习模型进行对比,其准确率分别提高了1.27%和1.07%,充分证明了该模型的合理有效性。 展开更多
关键词 文本情感分析 双向门控循环单元(BiGRU) 动态卷积神经网络(dcnn) 注意力机制 特征融合
在线阅读 下载PDF
一种基于深度神经网络的变电站巡检机器人路面识别方法 被引量:17
19
作者 董翔宇 张中 +3 位作者 朱俊 吴永恒 杜鹏 魏南 《计算机应用研究》 CSCD 北大核心 2020年第S02期389-391,共3页
目前变电站巡检机器人大多基于SLAM或GPS进行定位导航,在变电站中受电磁信号干扰及环境变化干扰,存在较大的定位误差。而基于图像识别的道路导航,受光照影响,存在很大的局限性。为此,根据变电站巡检机器人运行工况,提出了一种基于六角... 目前变电站巡检机器人大多基于SLAM或GPS进行定位导航,在变电站中受电磁信号干扰及环境变化干扰,存在较大的定位误差。而基于图像识别的道路导航,受光照影响,存在很大的局限性。为此,根据变电站巡检机器人运行工况,提出了一种基于六角锥体模型(hexcone model)的图像预处理算法,结合神经网络的路面识别算法,以实现变电站巡检机器人能够在复杂光照环境下的路面识别。该算法通过摄像头获取路面的实时图像信息,然后利用六角锥体模型处理图像中由外界环境因素所带来的干扰,对图像进行预处理,最后利用深层卷积神经网络(deep convolutional neural network,DCNN)方法提取处理后的图像特征并完成道路分割。实验结果表明,该方法能够在不降低路面识别精度的基础上,保证较高的光照适应度,具有较强的抗干扰能力。 展开更多
关键词 场景识别 六角锥体模型 深层卷积神经网络 变电站巡检机器人
在线阅读 下载PDF
超深层走滑断裂典型分段及其内部缝网系统发育的差异性研究——以塔里木盆地富满地区F_(Ⅰ)17断裂带为例 被引量:1
20
作者 谭笑林 张银涛 +7 位作者 吕文雅 谢舟 曾联波 袁敬一 熊昶 宋逸辰 李浩 张克宁 《地质论评》 北大核心 2025年第4期1403-1413,共11页
走滑断裂控制的缝网系统是塔里木盆地超深层碳酸盐岩的有效储集空间和主要渗流通道,不同典型分段的缝网系统分布特征存在较大差异。笔者等基于卷积神经网络的方法对富满地区F_(Ⅰ)17断裂带进行识别并划分典型分段,通过FDI的方法定量刻... 走滑断裂控制的缝网系统是塔里木盆地超深层碳酸盐岩的有效储集空间和主要渗流通道,不同典型分段的缝网系统分布特征存在较大差异。笔者等基于卷积神经网络的方法对富满地区F_(Ⅰ)17断裂带进行识别并划分典型分段,通过FDI的方法定量刻画典型分段缝网系统发育带宽度,根据单井产能分析反映典型分段及其内部缝网系统分布特征。富满地区F_(Ⅰ)17断裂带可划分为叠接拉分段、叠接挤压段、平移段和转折侧接段等4种类型,总共14个分段,其中转折侧接段又可进一步划分为侧接挤压段和侧接拉分段。不同典型分段缝网系统发育带平均宽度存在明显差异,在发育规模相近的情况下,缝网系统发育程度存在转折侧接段>叠接挤压段>叠接拉分段>平移段的规律,其中叠接拉分段缝网系统有效性强于叠接挤压段。叠接段和转折侧接段的两侧,以及平移段中的主干断裂、主干断裂与次级断裂交汇部位均为缝网系统优势发育部位。叠(侧)接挤压段的中部具有一定的缝网系统发育程度,但叠(侧)接拉分段的中部发育程度较弱。结合典型分段缝网系统发育带宽度与单井产能分析结果,最终建立了超深层走滑断裂典型分段缝网系统非均质发育模式。 展开更多
关键词 深层走滑断裂 典型分段 缝网系统 卷积神经网络 FDI 单井产能 富满地区
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部