期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于宽浅稠密网络的无人驾驶汽车交通标志牌识别
1
作者 邓涛 李鑫 +1 位作者 汪明明 邓彪 《汽车技术》 CSCD 北大核心 2020年第1期12-18,共7页
以稠密网络为基础设计了交通标志牌识别模型,重点研究数据集预处理网络,利用宽浅稠密网络提取图片特征,并构建了全局平均池化分类网络。利用翻转和数据增强方法对数据集进行扩增处理,采用动态数据扩增策略使模型适应训练数据的变化,在... 以稠密网络为基础设计了交通标志牌识别模型,重点研究数据集预处理网络,利用宽浅稠密网络提取图片特征,并构建了全局平均池化分类网络。利用翻转和数据增强方法对数据集进行扩增处理,采用动态数据扩增策略使模型适应训练数据的变化,在测试集上实现了99.68%的准确率。在标志牌清晰完整和模糊不全两种情况下验证模型识别效果,结果显示,模型未出现误检和漏检情况,在图像信息被破坏的情况下,仍能以最大置信度正确地识别标志牌,识别准确度高、抗干扰能力强,具有良好的鲁棒性及泛化能力。 展开更多
关键词 无人驾驶 交通标志牌识别 深度学习 深层卷积神经网络 稠密网络
在线阅读 下载PDF
基于多分支结构的不确定性局部通道注意力机制 被引量:6
2
作者 伍邦谷 张苏林 +3 位作者 石红 朱鹏飞 王旗龙 胡清华 《电子学报》 EI CAS CSCD 北大核心 2022年第2期374-382,共9页
近几年的研究表明视觉注意力机制是提升深层卷积神经网络性能的有效途径.然而,现有的视觉注意力方法更多地致力于建模所有卷积通道之间的相关性,在一定程度上限制了模型的计算效率.此外,这些方法尚未明确考虑相关性建模过程中不确定性... 近几年的研究表明视觉注意力机制是提升深层卷积神经网络性能的有效途径.然而,现有的视觉注意力方法更多地致力于建模所有卷积通道之间的相关性,在一定程度上限制了模型的计算效率.此外,这些方法尚未明确考虑相关性建模过程中不确定性带来的影响,缺少对注意力机制在泛化能力和稳定性方面的探索.为解决上述问题,提出了一种多分支局部通道注意力模块(Multi-Branch Local Channel Attention,MBLCA).通过建模通道之间的局部相关性学习各个通道的权重,提升了模型的计算效率.并采用蒙特卡洛(Monte Carlo,MC)Dropout近似的深度贝叶斯学习方法对局部通道注意力模块进行不确定性建模,从而得到一个多分支的局部通道注意力模块.提出的MBLCA模块可以灵活地应用于各种深层卷积神经网络架构中,与同类型的工作相比,嵌入MBLCA模块的ResNet-50网络结构在ImageNet-1K和MS COCO数据集上分别取得了2.58%的分类精度提升和1.9%的AP提升. 展开更多
关键词 通道注意力机制 不确定性 多分支结构 深层卷积神经网络
在线阅读 下载PDF
基于DBLSTM-DCNN的骨导和气导语音转换
3
作者 储有亮 李梁 《声学技术》 CSCD 北大核心 2021年第6期815-821,共7页
为了解决人们在强噪声环境下,通过空气途径传递的语音信号会严重失真的问题,提出了一种基于深层双向长短期记忆-深度卷积神经网络(Deep Bidirectional Long and Short Term Memory-Deep Convolutional Neural Network,DBLSTM-DCNN)的骨... 为了解决人们在强噪声环境下,通过空气途径传递的语音信号会严重失真的问题,提出了一种基于深层双向长短期记忆-深度卷积神经网络(Deep Bidirectional Long and Short Term Memory-Deep Convolutional Neural Network,DBLSTM-DCNN)的骨导语音转气导语音的语音转换模型。该模型利用DBLSTM层收集和保存相邻连续帧的隐藏信息,再通过DCNN层来提取频域方面的特征信息,可以很好地解决由于骨导语音高频成份严重缺失导致的转换语音不够自然的问题。实验结果表明,该模型的语音质量感知评价(Perceptual Evaluation of Speech Quality,PESQ)、短时客观可懂度(Short-Time Objective Intelligibility,STOI)、对数谱距离(Log-spectral Distance,LSD)等客观评价指标均有良好的表现,证明了该模型在骨导语音转气导语音方面具有较好的转换效果。 展开更多
关键词 语音转换 深层卷积神经网络(DCNN) 深层双向长短期记忆网络(DBLSTM)
在线阅读 下载PDF
基于Cascade-Rcnn的行人检测 被引量:2
4
作者 刘博文 彭祝亮 范程岸 《无线互联科技》 2020年第2期15-17,共3页
Faster Rcnn是目标检测领域中精确度较高、使用范围较广的一个经典算法,而Cascade Rcnn是借鉴Faster Rcnn改进的。文章将Cascade Rcnn的方法应用于行人检测中,利用深层卷积神经网络提取图像特征,通过RPN提取可能含有行人的区域,利用多... Faster Rcnn是目标检测领域中精确度较高、使用范围较广的一个经典算法,而Cascade Rcnn是借鉴Faster Rcnn改进的。文章将Cascade Rcnn的方法应用于行人检测中,利用深层卷积神经网络提取图像特征,通过RPN提取可能含有行人的区域,利用多层级联的检测器对目标区域进行判别和分类,在数据集中进行了检测验证。实验结果表明,相比基于Faster-rcnn的行人检测方法,在测试集上检测准确度达到了66.2%,其检测效果更好。 展开更多
关键词 行人检测 深度学习 目标检测 深层卷积神经网络
在线阅读 下载PDF
基于对抗训练与词性推理的文本情感分析
5
作者 邵党国 胡永健 《陕西理工大学学报(自然科学版)》 2023年第3期23-30,共8页
针对现有的方面级情感分析方法忽略或没有充分提取句子长距离依赖关系和上下文信息,以及模型鲁棒性和泛化能力较低等问题,提出了一种基于投影梯度下降(PGD)对抗训练和词性推理的方面级情感分析模型PGDBD。首先利用PGD攻击让模型对抗训练... 针对现有的方面级情感分析方法忽略或没有充分提取句子长距离依赖关系和上下文信息,以及模型鲁棒性和泛化能力较低等问题,提出了一种基于投影梯度下降(PGD)对抗训练和词性推理的方面级情感分析模型PGDBD。首先利用PGD攻击让模型对抗训练,进行正则化处理,增强模型的泛化能力;其次使用BERT生成的词向量取代深层金字塔卷积神经网络(DPCNN)模型本身的词向量,BERT能够捕捉句子中更长距离的依赖关系;最后,通过词性推理层提取方面词附近重要的局部特征,利用DPCNN对全局特征进行提取,获取更全面的上下文信息;将局部特征和全局特征进行融合,构成基于对抗训练和词性推理的情感分类模型。通过在4个公共数据集上进行实验,结果表明该模型的性能相较于其他基线模型有明显的提升。 展开更多
关键词 情感分析 对抗训练 词性推理 BERT 深层金字塔卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部