In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-p...In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.展开更多
Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of...Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.展开更多
The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow,cutter-head rotating speed,cutting depth and suction port position on...The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow,cutter-head rotating speed,cutting depth and suction port position on the cutter-suction capacity.The efficiency of the cutter-suction is analyzed based on the analysis of the variation law of the solid-phase volume fraction of the flow field,the variation law of the velocity distribution in the flow field and the distribution law of the solid-phase concentration.The results show that the increase of cutter-suction flow can significantly improve the cutter-suction efficiency when it is less than1000m3/h.However,when it is more than1000m3/h,it is helpless.When the cutter-head rotate speed is within the range of10–25r/min,the cutter-suction efficiency stabilizes at about95%.While the speed is greater than25r/min,the cutter-suction efficiency decreases sharply with the increase of cutter-head rotate speed.With the increase of cutting depth,the cutter-suction efficiency first increases and then remains stable and finally decreases.The cutter-suction efficiency remains at about94%when the suction port position deviation ranges from0°to30°,but it has a sharply reduction when the deviation angle is more than30°.展开更多
In order to investigate the characteristics of particle-induced pressure loss in the solid–liquid lifting pipe,a series of experiments were conducted in 200 mm diameter lifting pipe.Simulation manganese nodules with ...In order to investigate the characteristics of particle-induced pressure loss in the solid–liquid lifting pipe,a series of experiments were conducted in 200 mm diameter lifting pipe.Simulation manganese nodules with five different mean diameters of10 mm,20 mm,30 mm,40 mm and 50 mm were used,both in isolation and a combination in equal fraction by mass.The flow velocities in the lifting pipe ranged from 0.12 m/s to 1.61 m/s,and the mass of particles employed was 10 kg for each particle diameter.Three regimes,wavy bed,partly fluidization,and fully fluidization,were observed over the flow velocity.The solid–liquid pressure drop data were measured by differential pressure transmitter,and pressure drop caused by the solid particles was calculated and analyzed.The results show that the evolutions of the pressure loss due to solid particles are relevant to the solid–liquid flow regimes,and they are distinctly influenced by fluid velocity and particle size.展开更多
基金Project(51375498) supported by the National Natural Science Foundation of China
文摘In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.
基金Project(51375498)supported by the National Natural Science Foundation of China
文摘Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.
基金Project(51775561)supported by the National Natural Science Foundation of ChinaProject(20130162110004)supported by the National Doctoral Foundation of China
文摘The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow,cutter-head rotating speed,cutting depth and suction port position on the cutter-suction capacity.The efficiency of the cutter-suction is analyzed based on the analysis of the variation law of the solid-phase volume fraction of the flow field,the variation law of the velocity distribution in the flow field and the distribution law of the solid-phase concentration.The results show that the increase of cutter-suction flow can significantly improve the cutter-suction efficiency when it is less than1000m3/h.However,when it is more than1000m3/h,it is helpless.When the cutter-head rotate speed is within the range of10–25r/min,the cutter-suction efficiency stabilizes at about95%.While the speed is greater than25r/min,the cutter-suction efficiency decreases sharply with the increase of cutter-head rotate speed.With the increase of cutting depth,the cutter-suction efficiency first increases and then remains stable and finally decreases.The cutter-suction efficiency remains at about94%when the suction port position deviation ranges from0°to30°,but it has a sharply reduction when the deviation angle is more than30°.
基金Projects(51174037,51339008)supported by the National Natural Science Foundation of China
文摘In order to investigate the characteristics of particle-induced pressure loss in the solid–liquid lifting pipe,a series of experiments were conducted in 200 mm diameter lifting pipe.Simulation manganese nodules with five different mean diameters of10 mm,20 mm,30 mm,40 mm and 50 mm were used,both in isolation and a combination in equal fraction by mass.The flow velocities in the lifting pipe ranged from 0.12 m/s to 1.61 m/s,and the mass of particles employed was 10 kg for each particle diameter.Three regimes,wavy bed,partly fluidization,and fully fluidization,were observed over the flow velocity.The solid–liquid pressure drop data were measured by differential pressure transmitter,and pressure drop caused by the solid particles was calculated and analyzed.The results show that the evolutions of the pressure loss due to solid particles are relevant to the solid–liquid flow regimes,and they are distinctly influenced by fluid velocity and particle size.