期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DWT-CNN-Informer模型的液压支架压力多步长预测
1
作者
张传伟
张刚强
+1 位作者
路正雄
李林岳
《中国安全生产科学技术》
北大核心
2025年第4期57-63,共7页
为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神...
为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神经网络(CNN)模型提取频率特征;提取的频率特征输入Informer编码器,经位置编码和多头概率稀疏自注意力机制捕捉时序变化特征,并结合自注意力蒸馏减少特征冗余;将Informer解码器改为全连接层,直接输出各分量多步长预测结果;重构叠加各分量多步长预测结果得到液压支架压力多步长预测结果。研究结果表明:在预测步长分别为6,12,24时,DWT-CNN-Informer模型相比LSTM、Informer、CNN-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、对称平均绝对百分比误差(SMAPE)指标上均表现出更高预测精度。研究结果为液压支架压力精准预测提供有效方法。
展开更多
关键词
液压支架压力
多步长预测
离散小波变换
CNN模型
Informer模型
在线阅读
下载PDF
职称材料
基于LSTM-Informer模型的液压支架压力时空多步长预测
被引量:
3
2
作者
余琼芳
杨鹏飞
唐高峰
《工矿自动化》
CSCD
北大核心
2024年第6期30-35,共6页
目前多步液压支架压力预测大多为单步液压支架压力的累计预测,单步累计次数越多,累计误差就越大,影响预测精度。针对该问题,提出了一种基于长短时记忆(LSTM)-Informer模型的液压支架压力时空多步长预测方法。采用卡尔曼滤波消除液压支...
目前多步液压支架压力预测大多为单步液压支架压力的累计预测,单步累计次数越多,累计误差就越大,影响预测精度。针对该问题,提出了一种基于长短时记忆(LSTM)-Informer模型的液压支架压力时空多步长预测方法。采用卡尔曼滤波消除液压支架压力数据中的振动噪声后,在工作面端部和中部各选取相邻的5台液压支架压力数据建立2个时空数据集(数据集1和数据集2),并对时空数据进行标准化预处理。将时空数据输入LSTM模型提取时空特征,并将提取的时空特征输入Informer模型的编码器,经过位置编码后利用多头概率稀疏自注意力来关注压力序列的变化特征,经过最大池化和一维卷积消除最终输出特征图的冗余组合。利用多头概率稀疏自注意力来关注压力序列的变化特征,将Informer模型的解码器改为全连接层,得到液压支架压力的预测结果。实验结果表明:与基于门控循环单元(GRU)、LSTM和Informer模型的预测方法相比,基于LSTM-Informer模型的预测方法在预测6,12,24步长液压支架压力时的均方根误差(RMSE)和平均绝对误差(MAE)均最小;其中基于数据集1预测的6步长液压支架压力的RMSE分别降低了41.63%,49.74%,11.85%,MAE分别降低了41.75%,50.00%,12.00%;基于数据集2预测的6步长液压支架压力的RMSE分别降低了48.15%,59.86%,19.88%,MAE分别降低了49.87%,54.90%,13.16%。
展开更多
关键词
液压支架压力
多步长
液压支架压力
预测
LSTM-Informer模型
时间相关性
卡尔曼滤波
在线阅读
下载PDF
职称材料
题名
基于DWT-CNN-Informer模型的液压支架压力多步长预测
1
作者
张传伟
张刚强
路正雄
李林岳
机构
西安科技大学机械工程学院
陕西交通职业技术学院
出处
《中国安全生产科学技术》
北大核心
2025年第4期57-63,共7页
基金
陕西省重点研发计划项目(2022GD-TSLD-63,2022GD-TSLD-64)
陕西省教育厅项目(23JP100)。
文摘
为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神经网络(CNN)模型提取频率特征;提取的频率特征输入Informer编码器,经位置编码和多头概率稀疏自注意力机制捕捉时序变化特征,并结合自注意力蒸馏减少特征冗余;将Informer解码器改为全连接层,直接输出各分量多步长预测结果;重构叠加各分量多步长预测结果得到液压支架压力多步长预测结果。研究结果表明:在预测步长分别为6,12,24时,DWT-CNN-Informer模型相比LSTM、Informer、CNN-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、对称平均绝对百分比误差(SMAPE)指标上均表现出更高预测精度。研究结果为液压支架压力精准预测提供有效方法。
关键词
液压支架压力
多步长预测
离散小波变换
CNN模型
Informer模型
Keywords
hydraulic support pressure
multi-step prediction
discrete wavelet transform
CNN model
Informer model
分类号
X936 [环境科学与工程—安全科学]
在线阅读
下载PDF
职称材料
题名
基于LSTM-Informer模型的液压支架压力时空多步长预测
被引量:
3
2
作者
余琼芳
杨鹏飞
唐高峰
机构
河南理工大学电气工程与自动化学院
河南理工大学河南省煤矿装备智能检测与控制重点实验室
大连理工大学北京研究院博士后科研工作站
出处
《工矿自动化》
CSCD
北大核心
2024年第6期30-35,共6页
基金
国家自然科学基金资助项目(61601172)
中国博士后科学基金资助项目(2018M641287)。
文摘
目前多步液压支架压力预测大多为单步液压支架压力的累计预测,单步累计次数越多,累计误差就越大,影响预测精度。针对该问题,提出了一种基于长短时记忆(LSTM)-Informer模型的液压支架压力时空多步长预测方法。采用卡尔曼滤波消除液压支架压力数据中的振动噪声后,在工作面端部和中部各选取相邻的5台液压支架压力数据建立2个时空数据集(数据集1和数据集2),并对时空数据进行标准化预处理。将时空数据输入LSTM模型提取时空特征,并将提取的时空特征输入Informer模型的编码器,经过位置编码后利用多头概率稀疏自注意力来关注压力序列的变化特征,经过最大池化和一维卷积消除最终输出特征图的冗余组合。利用多头概率稀疏自注意力来关注压力序列的变化特征,将Informer模型的解码器改为全连接层,得到液压支架压力的预测结果。实验结果表明:与基于门控循环单元(GRU)、LSTM和Informer模型的预测方法相比,基于LSTM-Informer模型的预测方法在预测6,12,24步长液压支架压力时的均方根误差(RMSE)和平均绝对误差(MAE)均最小;其中基于数据集1预测的6步长液压支架压力的RMSE分别降低了41.63%,49.74%,11.85%,MAE分别降低了41.75%,50.00%,12.00%;基于数据集2预测的6步长液压支架压力的RMSE分别降低了48.15%,59.86%,19.88%,MAE分别降低了49.87%,54.90%,13.16%。
关键词
液压支架压力
多步长
液压支架压力
预测
LSTM-Informer模型
时间相关性
卡尔曼滤波
Keywords
hydraulic support pressure
multi-step hydraulic support pressure prediction
LSTM-Informer model
time correlation
Kalman filtering
分类号
TD323 [矿业工程—矿井建设]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DWT-CNN-Informer模型的液压支架压力多步长预测
张传伟
张刚强
路正雄
李林岳
《中国安全生产科学技术》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于LSTM-Informer模型的液压支架压力时空多步长预测
余琼芳
杨鹏飞
唐高峰
《工矿自动化》
CSCD
北大核心
2024
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部