Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range...Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map.展开更多
This study aims to examine the usability of environmentally harmless vegetable oil in the minimum quantity of lubrication(MQL)system in face milling of AISI O2 steel and to optimize the cutting parameters by different...This study aims to examine the usability of environmentally harmless vegetable oil in the minimum quantity of lubrication(MQL)system in face milling of AISI O2 steel and to optimize the cutting parameters by different statistical methods.Vegetable oil was preferred as cutting fluid,and Taguchi method was used in the preparation of the test pattern.After testing with the prepared test pattern,cutting performance in all parameters has been improved according to dry conditions thanks to the MQL system.The highest tool life was obtained by using cutting parameters of 7.5 m cutting length,100 m/min cutting speed,100 mL/h MQL flow rate and 0.1 mm/tooth feed rate.Optimum cutting parameters were determined according to the Taguchi analysis,and the obtained parameters were confirmed with the verification tests.In addition,the optimum test parameter was determined by applying the gray relational analysis method.After using ANOVA analysis according to the measured surface roughness and cutting force values,the most effective cutting parameter was observed to be the feed rate.In addition,the models for surface roughness and cutting force values were obtained with precisions of 99.63%and 99.68%,respectively.Effective wear mechanisms were found to be abrasion and adhesion.展开更多
Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N load...Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N loads respectively,and the effects of copper-coated MoS_(2) on the friction performances of the materials were studied.Results showed that the way of copper-coated on the surface of MoS_(2) could reinforce the bonding between MoS_(2) and matrix,and inhibited the formation of MoO_(2).Moreover,both materials formed a MoS_(2) lubricating film on the surface during the friction process.While the lubricating film formed after copper coating on MoS_(2) was thicker and had uneven morphology,it was more conducive to improving the friction performance of the material.Compared with conventional materials,the wear rate of copper-coated materials was reduced by one order of magnitude,and the friction coefficient was also reduced by 22.44% and 22.53%,respectively,when sliding under 4 N and 10 N loads.It shows that copper-coated MoS_(2)can improve friction properties of bronze-graphite-MoS_(2)self-lubricating materials furtherly.展开更多
Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly...Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.展开更多
The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimpl...The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.展开更多
基金Projects(2017YFB0306105,2018YFE0306100)supported by the National Key Research and Development Program of China
文摘Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map.
文摘This study aims to examine the usability of environmentally harmless vegetable oil in the minimum quantity of lubrication(MQL)system in face milling of AISI O2 steel and to optimize the cutting parameters by different statistical methods.Vegetable oil was preferred as cutting fluid,and Taguchi method was used in the preparation of the test pattern.After testing with the prepared test pattern,cutting performance in all parameters has been improved according to dry conditions thanks to the MQL system.The highest tool life was obtained by using cutting parameters of 7.5 m cutting length,100 m/min cutting speed,100 mL/h MQL flow rate and 0.1 mm/tooth feed rate.Optimum cutting parameters were determined according to the Taguchi analysis,and the obtained parameters were confirmed with the verification tests.In addition,the optimum test parameter was determined by applying the gray relational analysis method.After using ANOVA analysis according to the measured surface roughness and cutting force values,the most effective cutting parameter was observed to be the feed rate.In addition,the models for surface roughness and cutting force values were obtained with precisions of 99.63%and 99.68%,respectively.Effective wear mechanisms were found to be abrasion and adhesion.
文摘Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N loads respectively,and the effects of copper-coated MoS_(2) on the friction performances of the materials were studied.Results showed that the way of copper-coated on the surface of MoS_(2) could reinforce the bonding between MoS_(2) and matrix,and inhibited the formation of MoO_(2).Moreover,both materials formed a MoS_(2) lubricating film on the surface during the friction process.While the lubricating film formed after copper coating on MoS_(2) was thicker and had uneven morphology,it was more conducive to improving the friction performance of the material.Compared with conventional materials,the wear rate of copper-coated materials was reduced by one order of magnitude,and the friction coefficient was also reduced by 22.44% and 22.53%,respectively,when sliding under 4 N and 10 N loads.It shows that copper-coated MoS_(2)can improve friction properties of bronze-graphite-MoS_(2)self-lubricating materials furtherly.
基金Project(2016YFB0301402)supported by the National Key Research and Development Program of ChinaProject(CSU20151024)supported by the Innovation-driven Plan in Central South University,China
文摘Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.
基金Project(2007046) supported by High Technology Research Project of Jiangsu Province,China
文摘The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.