A batch of column experiments was carried out to investigate the change of Cr(Ⅵ) concentration leached out from chromium-containing slag with HCI as leaching agent, and to study influences of pH, ratio of solid mas...A batch of column experiments was carried out to investigate the change of Cr(Ⅵ) concentration leached out from chromium-containing slag with HCI as leaching agent, and to study influences of pH, ratio of solid mass to solution volume, flow velocity and temperature on Cr(Ⅵ) leaching. The optimal parameters were obtained for Cr(Ⅵ) leaching and a fitting model was established to describe the procedure of Cr(Ⅵ) leaching. The results show that Cr(Ⅵ) concentration in leachate increases with decreasing pH and increasing flow velocity and temperature. Moreover, Cr(Ⅵ) leaching percentage increases with increasing ratio of solid mass to solution volume. The optimal parameters for Cr(Ⅵ) selective leaching are as follows: pH=3.0, 1:5 of ratio of solid mass to solution volume, 180 mL/min of flow velocity and 40 ℃ of temperature. The procedure of Cr(Ⅵ) leaching fits well with the model: v= 1.87t^-0.54, indicating that the leaching rate of Cr(Ⅵ) declines in an exponential order of-0.54.展开更多
Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process...Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.展开更多
The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficie...The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffiuent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.展开更多
A kinetic study on the sulfuric acid leaching of multi-metal oxide, which is the product of multi-metal copper alloy with iron trioxide roasted in oxygen, was carried out. The effects of leaching time, stirring speed,...A kinetic study on the sulfuric acid leaching of multi-metal oxide, which is the product of multi-metal copper alloy with iron trioxide roasted in oxygen, was carried out. The effects of leaching time, stirring speed, sulfuric acid concentration, reaction temperature, and particle size of the multi-metal oxide on the kinetics and mechanism of copper extraction were studied. It was found that the reaction kinetic model about the copper extraction from multi-metal oxide follows the mixed kinetic shrinking core mode: 1/31n(1-X)+(1-X)-l/3-1=680.5C(H2SO4)0.4297dp0.75115exp(-Ea/RT)t.展开更多
基金Projects(2006AA06Z374 2007AA021304) supported by the National High-Tech Research and Development Program of China
文摘A batch of column experiments was carried out to investigate the change of Cr(Ⅵ) concentration leached out from chromium-containing slag with HCI as leaching agent, and to study influences of pH, ratio of solid mass to solution volume, flow velocity and temperature on Cr(Ⅵ) leaching. The optimal parameters were obtained for Cr(Ⅵ) leaching and a fitting model was established to describe the procedure of Cr(Ⅵ) leaching. The results show that Cr(Ⅵ) concentration in leachate increases with decreasing pH and increasing flow velocity and temperature. Moreover, Cr(Ⅵ) leaching percentage increases with increasing ratio of solid mass to solution volume. The optimal parameters for Cr(Ⅵ) selective leaching are as follows: pH=3.0, 1:5 of ratio of solid mass to solution volume, 180 mL/min of flow velocity and 40 ℃ of temperature. The procedure of Cr(Ⅵ) leaching fits well with the model: v= 1.87t^-0.54, indicating that the leaching rate of Cr(Ⅵ) declines in an exponential order of-0.54.
基金Project(51904104) supported by the National Natural Science Foundation of ChinaProject(2020JJ5174) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2019M662780) supported by China Postdoctoral Science FoundationProject(19C0746) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2021-2843) supported by College Student Innovation and Entrepreneurship Training Program of Hunan Province,China。
文摘Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.
基金Project(2005BA639C) supported by the National Science and Technology Development of China
文摘The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffiuent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.
基金Project(2011AA061003)supported by Hi-Tech Research and Development Program of China
文摘A kinetic study on the sulfuric acid leaching of multi-metal oxide, which is the product of multi-metal copper alloy with iron trioxide roasted in oxygen, was carried out. The effects of leaching time, stirring speed, sulfuric acid concentration, reaction temperature, and particle size of the multi-metal oxide on the kinetics and mechanism of copper extraction were studied. It was found that the reaction kinetic model about the copper extraction from multi-metal oxide follows the mixed kinetic shrinking core mode: 1/31n(1-X)+(1-X)-l/3-1=680.5C(H2SO4)0.4297dp0.75115exp(-Ea/RT)t.