期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多视图融合和2.5D U-Net的海马体图像分割
1
作者 陈立伟 彭逸飞 +1 位作者 余仁萍 孙源呈 《郑州大学学报(工学版)》 北大核心 2025年第5期26-34,共9页
针对现有海马体图像自动分割方法不能很好地利用上下文信息导致分割准确率难以提高以及训练和检测过程中内存消耗大的问题,提出了一种基于多视图融合和2.5D U-Net的海马体图像分割模型MVF-2.5D U-Net。首先,模型对2D U-Net进行了改进,增... 针对现有海马体图像自动分割方法不能很好地利用上下文信息导致分割准确率难以提高以及训练和检测过程中内存消耗大的问题,提出了一种基于多视图融合和2.5D U-Net的海马体图像分割模型MVF-2.5D U-Net。首先,模型对2D U-Net进行了改进,增加Triplet Attention模块的同时调整了网络的层深;其次,使用相邻切片组成的三通道2.5D图像代替传统的单切片输入;最后,构建了一个体积融合网络代替传统的众数投票机制。在HarP数据集上通过交叉验证的方式对网络进行了实验验证。实验结果表明:所提模型在海马体图像分割任务上的平均Dice系数和豪斯多夫距离分别为0.902和3.02,准确率和稳定性优于传统的U-Net模型和对比算法,同时适用于资源受限的环境。实验证明所提模型能够更有效地实现磁共振影像上的海马体分割。 展开更多
关键词 海马体图像分割 卷积神经网络 U-Net Triplet Attention 注意力机制 积融合网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部