期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合YOLOv7和BYTE多目标跟踪的多类别海珍品计数方法
被引量:
11
1
作者
安志强
李智军
+4 位作者
刘硕
赵永刚
陈启俊
左然涛
林远山
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第9期183-189,共7页
针对目前养殖过程中海珍品计数方法成本高、效率低、计数精度难以保障等问题,该研究以真实底播养殖环境下的海珍品为研究对象,以水下拍摄的海珍品视频为数据源,提出一种基于视频多目标跟踪的多类别海珍品计数方法。首先,采用性能优异的Y...
针对目前养殖过程中海珍品计数方法成本高、效率低、计数精度难以保障等问题,该研究以真实底播养殖环境下的海珍品为研究对象,以水下拍摄的海珍品视频为数据源,提出一种基于视频多目标跟踪的多类别海珍品计数方法。首先,采用性能优异的YOLOv7算法实现海珍品目标检测器,为多目标跟踪提供输入;然后,结合真实养殖环境下同类别海珍品外观相似性高、不清晰等特点,借鉴BYTE算法的多目标跟踪思想,设计多类别轨迹生成策略和基于轨迹ID号的计数策略,提出一种多类别海珍品跟踪与计数方法。并提出一套更适用于基于轨迹ID号计数方法的评估指标。试验结果表明,改进平均计数精度、改进平均绝对误差、改进均方根误差及帧率分别为91.62%、5.75、6.38和32帧/s,各项指标多优于YOLOv5+DeepSORT、YOLOv7+DeepSORT、YOLOv5+BYTE、YOLOv7+BYTE等算法,尤其改进平均计数精度、帧率指标比YOLOv5+DeepSORT高了29.51个百分点和8帧/s,且在改进平均绝对误差、改进均方根误差指标上分别降低19.50和12.08。该研究方法可有效帮助水产养殖企业掌握水下海珍品数量,为现代化渔业的测产研究提供技术参考,为水产养殖的智慧管理提供科学决策依据。
展开更多
关键词
机器视觉
深度学习
海珍品计数
水产养殖
多目标跟踪
在线阅读
下载PDF
职称材料
题名
融合YOLOv7和BYTE多目标跟踪的多类别海珍品计数方法
被引量:
11
1
作者
安志强
李智军
刘硕
赵永刚
陈启俊
左然涛
林远山
机构
大连海洋大学信息工程学院
辽宁省海洋信息技术重点实验室
设施渔业教育部重点实验室
大连鑫玉龙海洋生物种业科技股份有限公司
大连海洋大学水产与生命学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第9期183-189,共7页
基金
辽宁省教育厅基本科研项目(LJKZ0730,QL202016)
辽宁省自然基金资助计划(2020-KF-12-09)
+3 种基金
辽宁省重点研发计划(2020JH2/10100043)
设施渔业教育部重点实验室开放课题(202219)
辽宁省应用基础计划项目(2022JH2/101300187)
2023中央财政对辽宁渔业补助项目。
文摘
针对目前养殖过程中海珍品计数方法成本高、效率低、计数精度难以保障等问题,该研究以真实底播养殖环境下的海珍品为研究对象,以水下拍摄的海珍品视频为数据源,提出一种基于视频多目标跟踪的多类别海珍品计数方法。首先,采用性能优异的YOLOv7算法实现海珍品目标检测器,为多目标跟踪提供输入;然后,结合真实养殖环境下同类别海珍品外观相似性高、不清晰等特点,借鉴BYTE算法的多目标跟踪思想,设计多类别轨迹生成策略和基于轨迹ID号的计数策略,提出一种多类别海珍品跟踪与计数方法。并提出一套更适用于基于轨迹ID号计数方法的评估指标。试验结果表明,改进平均计数精度、改进平均绝对误差、改进均方根误差及帧率分别为91.62%、5.75、6.38和32帧/s,各项指标多优于YOLOv5+DeepSORT、YOLOv7+DeepSORT、YOLOv5+BYTE、YOLOv7+BYTE等算法,尤其改进平均计数精度、帧率指标比YOLOv5+DeepSORT高了29.51个百分点和8帧/s,且在改进平均绝对误差、改进均方根误差指标上分别降低19.50和12.08。该研究方法可有效帮助水产养殖企业掌握水下海珍品数量,为现代化渔业的测产研究提供技术参考,为水产养殖的智慧管理提供科学决策依据。
关键词
机器视觉
深度学习
海珍品计数
水产养殖
多目标跟踪
Keywords
machine vision
deep learning
sea foods counting
aquaculture
multi-target tracking
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合YOLOv7和BYTE多目标跟踪的多类别海珍品计数方法
安志强
李智军
刘硕
赵永刚
陈启俊
左然涛
林远山
《农业工程学报》
EI
CAS
CSCD
北大核心
2023
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部