期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合多重分解和差值修正的海浪波高预测研究
1
作者 卢鹏 姜星竹 +1 位作者 王振华 郑宗生 《海洋测绘》 CSCD 北大核心 2024年第2期36-40,共5页
为了提升海浪波高预测精度,提出了融合多重分解和差值修正的海浪波高预测模型(J-DE-LSTM)。该模型采用自适应噪声完备集合经验模态分解,对波高数据进行一重分解,以及对分解后的残差分量进行二重分解;采用亲和力传播算法进行聚类降维并... 为了提升海浪波高预测精度,提出了融合多重分解和差值修正的海浪波高预测模型(J-DE-LSTM)。该模型采用自适应噪声完备集合经验模态分解,对波高数据进行一重分解,以及对分解后的残差分量进行二重分解;采用亲和力传播算法进行聚类降维并输人到长短期记忆网络进行预测获取初步预测值。建立波高观测值与初步预测值形成的差值序列进行三重分解,采用样本熵重构为趋势项和周期项并进行权重计算,构建粒子群算法优化极限学习机和LSTM的组合预测模型进行双轨并行预测;最后将预测结果与权重加权融合进行差值修正未来点位波高预测值。实验结果表明J-DE-LSTM模型较LSTM、TCN模型平均绝对误差提升约4.1%~11.5%,均方误差提升6.5%~15.2%。 展开更多
关键词 海浪波高预测 差值修正 样本熵 模态分解 加权融合
在线阅读 下载PDF
基于MAF-GWO-LSTM算法的海浪有义波高预测模型
2
作者 陈恒轩 张雷 +1 位作者 杜传顺 张佳宁 《舰船科学技术》 北大核心 2024年第21期33-39,共7页
由于复杂海况随机海浪对船舶航行及人命安全造成威胁,通过构建海浪波高预测模型实现高海况海浪预警对提升航行安全具有重要意义。针对海浪波高预测问题,本文提出一种MAF-GWO-LSTM预测模型。首先利用滑动平均滤波器(Moving Average Filte... 由于复杂海况随机海浪对船舶航行及人命安全造成威胁,通过构建海浪波高预测模型实现高海况海浪预警对提升航行安全具有重要意义。针对海浪波高预测问题,本文提出一种MAF-GWO-LSTM预测模型。首先利用滑动平均滤波器(Moving Average Filter,MAF)对实测海浪数据进行处理得到有效波高的光滑趋势序列,作为预测模型的输入训练集;再选用长短时记忆神经网络LSTM作为预测浪模型,依据灰狼优化算法(Grey Wolf Optimization,GWO)对滑动窗口MA及神经网络训练过程中的参数进行自适应寻优,并以南海实测有效波高数据进行验证。研究结果表明,采用MAF滤波有利于提取海浪有效波高特征,再通过GWO-LSTM预测模型优化神经网络参数,最优参数下波高预报精度达到R^(2)=0.991 0。论文研究可为高海况下海浪有效波高预报预警提供一种有效手段。 展开更多
关键词 滑动平均滤波器 灰狼算法 海浪波高预测 长短时记忆神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部