文摘针对水下环境复杂性带来的多尺度目标检测挑战,提出了改进算法WPS-YOLOv8。设计了小波池化卷积模块(wavelet pooling convolution,WPConv),该模块通过小波池化技术降低通道压缩后特征图的分辨率,有效抑制了传统下采样过程中产生的频率混叠伪影,提升了特征提取质量和表达能力。提出了局部逐点分组重排卷积模块(partial pointwise group shuffle convolution,PGConv),该模块通过结合局部卷积与逐点卷积,能够在减少信息冗余的同时保持通道间的信息交互,弥补了深度可分离卷积的不足,增强了特征融合效果。提出了ShapeLoss损失函数,综合考虑影响不同尺度目标检测精度的因素,通过集成Shape-IoU和Shape-NWD两种损失测度,有效提升了对多尺度目标的总体检测精度。实验结果显示,相较于YOLOv8,WPS-YOLOv8在URPC2018和UTDAC2020水下数据集上的平均精度均值(mean average precision,mAP)分别提升了8.6和4.4个百分点,展现了其在水下多尺度目标检测中的出色表现。