期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于海林格距离和SMOTE的多类不平衡学习算法
被引量:
12
1
作者
董明刚
姜振龙
敬超
《计算机科学》
CSCD
北大核心
2020年第1期102-109,共8页
数据不平衡现象在现实生活中普遍存在。在处理不平衡数据时,传统的机器学习算法难以达到令人满意的效果。少数类样本合成上采样技术(Synthetic Minority Oversampling Technique,SMOTE)是一种有效的方法,但在多类不平衡数据中,边界点分...
数据不平衡现象在现实生活中普遍存在。在处理不平衡数据时,传统的机器学习算法难以达到令人满意的效果。少数类样本合成上采样技术(Synthetic Minority Oversampling Technique,SMOTE)是一种有效的方法,但在多类不平衡数据中,边界点分布错乱和类别分布不连续变得更加复杂,导致合成的样本点会侵入其他类别区域,造成数据过泛化。鉴于基于海林格距离的决策树已被证明对不平衡数据具有不敏感性,文中结合海林格距离和SMOTE,提出了一种基于海林格距离和SMOTE的上采样算法(Based on Hellinger Distance and SMOTE Oversampling Algorithm,HDSMOTE)。首先,建立基于海林格距离的采样方向选择策略,通过比较少数类样本点的局部近邻域内的海林格距离的大小,来引导合成样本点的方向。其次,设计了基于海林格距离的采样质量评估策略,以免合成的样本点侵入其他类别的区域,降低过泛化的风险。最后,采用7种代表性的上采样算法和HDSMOTE算法对15个多类不平衡数据集进行预处理,使用决策树的分类器进行分类,以Precision,Recall,F-measure,G-mean和MAUC作为评价标准对各算法的性能进行评价。实验结果表明,相比于对比算法,HDSMOTE算法在以上评价标准上均有所提升:在Precision上最高提升了17.07%,在Recall上最高提升了21.74%,在F-measure上最高提升了19.63%,在G-mean上最高提升了16.37%,在MAUC上最高提升了8.51%。HDSMOTE相对于7种代表性的上采样方法,在处理多类不平衡数据时有更好的分类效果。
展开更多
关键词
SMOTE
上
采样
海
林格
距离
多类不平衡学习
分类
在线阅读
下载PDF
职称材料
基于海林格距离和AHDPSO-ELM的岩爆烈度等级预测模型
被引量:
4
2
作者
温廷新
陈依琳
《中国安全科学学报》
CAS
CSCD
北大核心
2022年第11期38-46,共9页
为提高岩爆烈度等级预测准确率,提出一种基于海林格距离过采样(HDO)和自适应混合差分粒子群优化算法(AHDPSO)-极限学习机(ELM)的预测模型。首先,在分析影响岩爆烈度因素基础上选取主要影响指标,采用HDO算法增加少数类样本数目,均衡各等...
为提高岩爆烈度等级预测准确率,提出一种基于海林格距离过采样(HDO)和自适应混合差分粒子群优化算法(AHDPSO)-极限学习机(ELM)的预测模型。首先,在分析影响岩爆烈度因素基础上选取主要影响指标,采用HDO算法增加少数类样本数目,均衡各等级岩爆样本;然后,基于粒子群优化(PSO)算法,引入自适应种群间距和差分进化(DE)算法中变异算子设计AHDPSO,利用AHDPSO优选ELM的输入层权值和隐藏层阈值,构建岩爆烈度等级预测模型;最后,采用国内外301组岩爆样本对模型训练、测试并与其他模型对比。研究表明:经HDO算法均衡岩爆数据集后,整体的预测准确率提高11.91%,且各等级的平均预测准确率均得到提高;基于HDO的AHDPSO-ELM岩爆烈度等级预测模型平均预测准确率为98.92%,均方误差为0.0108,预测精度优于其他对比模型。
展开更多
关键词
海
林格
距离过
采样
(
hdo
)
自适应混合差分粒子群优化(AHDPSO)
岩爆烈度等级预测
极限学习机(ELM)
岩爆样本
变异算子
自适应种群间距
在线阅读
下载PDF
职称材料
题名
基于海林格距离和SMOTE的多类不平衡学习算法
被引量:
12
1
作者
董明刚
姜振龙
敬超
机构
桂林理工大学信息科学与工程学院
广西嵌入式技术与智能系统重点实验室
出处
《计算机科学》
CSCD
北大核心
2020年第1期102-109,共8页
基金
国家自然科学基金(61563012,61802085)
广西自然科学基金(2014GXNSFAA118371,2015GXNSFBA139260)
广西嵌入式技术与智能系统重点实验室基金(2018A-04)~~
文摘
数据不平衡现象在现实生活中普遍存在。在处理不平衡数据时,传统的机器学习算法难以达到令人满意的效果。少数类样本合成上采样技术(Synthetic Minority Oversampling Technique,SMOTE)是一种有效的方法,但在多类不平衡数据中,边界点分布错乱和类别分布不连续变得更加复杂,导致合成的样本点会侵入其他类别区域,造成数据过泛化。鉴于基于海林格距离的决策树已被证明对不平衡数据具有不敏感性,文中结合海林格距离和SMOTE,提出了一种基于海林格距离和SMOTE的上采样算法(Based on Hellinger Distance and SMOTE Oversampling Algorithm,HDSMOTE)。首先,建立基于海林格距离的采样方向选择策略,通过比较少数类样本点的局部近邻域内的海林格距离的大小,来引导合成样本点的方向。其次,设计了基于海林格距离的采样质量评估策略,以免合成的样本点侵入其他类别的区域,降低过泛化的风险。最后,采用7种代表性的上采样算法和HDSMOTE算法对15个多类不平衡数据集进行预处理,使用决策树的分类器进行分类,以Precision,Recall,F-measure,G-mean和MAUC作为评价标准对各算法的性能进行评价。实验结果表明,相比于对比算法,HDSMOTE算法在以上评价标准上均有所提升:在Precision上最高提升了17.07%,在Recall上最高提升了21.74%,在F-measure上最高提升了19.63%,在G-mean上最高提升了16.37%,在MAUC上最高提升了8.51%。HDSMOTE相对于7种代表性的上采样方法,在处理多类不平衡数据时有更好的分类效果。
关键词
SMOTE
上
采样
海
林格
距离
多类不平衡学习
分类
Keywords
SMOTE
Oversampling
Hellinger distance
Multi-class imbalanced learning
Classification
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
基于海林格距离和AHDPSO-ELM的岩爆烈度等级预测模型
被引量:
4
2
作者
温廷新
陈依琳
机构
辽宁工程技术大学工商管理学院
出处
《中国安全科学学报》
CAS
CSCD
北大核心
2022年第11期38-46,共9页
基金
国家自然科学基金资助(71371091)
辽宁省社会科学规划基金资助(L14BTJ004)。
文摘
为提高岩爆烈度等级预测准确率,提出一种基于海林格距离过采样(HDO)和自适应混合差分粒子群优化算法(AHDPSO)-极限学习机(ELM)的预测模型。首先,在分析影响岩爆烈度因素基础上选取主要影响指标,采用HDO算法增加少数类样本数目,均衡各等级岩爆样本;然后,基于粒子群优化(PSO)算法,引入自适应种群间距和差分进化(DE)算法中变异算子设计AHDPSO,利用AHDPSO优选ELM的输入层权值和隐藏层阈值,构建岩爆烈度等级预测模型;最后,采用国内外301组岩爆样本对模型训练、测试并与其他模型对比。研究表明:经HDO算法均衡岩爆数据集后,整体的预测准确率提高11.91%,且各等级的平均预测准确率均得到提高;基于HDO的AHDPSO-ELM岩爆烈度等级预测模型平均预测准确率为98.92%,均方误差为0.0108,预测精度优于其他对比模型。
关键词
海
林格
距离过
采样
(
hdo
)
自适应混合差分粒子群优化(AHDPSO)
岩爆烈度等级预测
极限学习机(ELM)
岩爆样本
变异算子
自适应种群间距
Keywords
Hellinger distance oversampling(
hdo
)
adaptive hybrid differential particle swarm optimization(AHDPSO)
prediction of rockburst intensity grade
extreme learning machine(ELM)
rockburst samples
mutation operator
adaptive population spacing
分类号
X936 [环境科学与工程—安全科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于海林格距离和SMOTE的多类不平衡学习算法
董明刚
姜振龙
敬超
《计算机科学》
CSCD
北大核心
2020
12
在线阅读
下载PDF
职称材料
2
基于海林格距离和AHDPSO-ELM的岩爆烈度等级预测模型
温廷新
陈依琳
《中国安全科学学报》
CAS
CSCD
北大核心
2022
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部