Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble si...Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.展开更多
The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved.Meanwhile,it is believed that frother transport between phases is perhaps the most impor...The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved.Meanwhile,it is believed that frother transport between phases is perhaps the most important reason for the interactive nature of the phenomena occurring in the bulk and froth phases in flotation,as frother adsorbed in the surface of rising bubbles is removed from the bulk phase and then released into the froth as a fraction of the bubbles burst.This causes the increased concentration in the froth compared to the bulk concentration,named as frother partitioning.Partitioning reflects the adsorption of frother on bubbles and how to influence bubble size is not known.There currently exists no such a topic aiming to link these two key parameters.To fill this vacancy,the correspondence between bubble size and frother partitioning was examined.Bubble size was measured by sampling-for-imaging(SFI)technique.Using total organic carbon(TOC)analysis to measure the frother partitioning between froth and bulk phases was determined.Measurements have shown,with no exceptions including four different frothers,higher frother concentration is in the bulk than in the froth.The results also show strong partitioning giving an increase in bubble size which implies there is a compelling relationship between these two,represented by CFroth/CBulk and D32.The CFroth/CBulkand D32 curves show similar exponential decay relationships as a function of added frother in the system,strongly suggesting that the frother concentration gradient between the bulk solution and the bubble interface is the driving force contributing to bubble size reduction.展开更多
Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill ...Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill Bubble Size Analyzer(MBSA) or bubble viewer that has been developed and completed by McGill University's Mineral Processing Group during the last decade is a unique instrument to serve this purpose.Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber.Results show that there is no difference in Sauter mean(D32) when tap or de-ionized water was used instead of process water.However,the frother concentration,in this research DowFroth 250(DF250),inside the chamber exhibited a pronounced effect on bubble size.Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications.It was also noted that the frother concentration which has been so far practiced in plant measurements(CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.展开更多
基金Project(ID42787)supported by the Istanbul Technical University,BAP(Scientific Research Project)Department,Turkey。
文摘Frothers facilitate the reduction of bubbles size by preventing bubbles coalescence and produce more stable froths.The collision probability of the bubbles and particles substantially increases by decreasing bubble size.For the same volume system,fewer bubbles result from a distribution of large-sized bubbles,and more bubbles result from a distribution of small-sized bubbles.In this research,fundamental two-phase frother characterization parameters were aimed to link with three-phase coal and talc flotation behavior.For this purpose,the effect of single and dual frother systems on inhibiting bubble coalescence was investigated with methyl isobutyl carbinol(MIBC),isooctanol(2 ethyl hexanol),pine oil,and Dowfroth 250.Based on the results of single frothers,isooctanol at the lowest critical coalescence concentration(CCC)value of 6×10^(−6) achieved the smallest bubbles with Sauter mean diameter of 0.80 mm.By blending Dowfroth 250 and pine oil,the bubbles size decreased significantly,reaching 0.45 mm.While the highest recoveries in coal flotation were obtained in single and frother blends where the bubbles size was measured as the smallest in two-phase system,and such a relationship was not found for talc flotation.
基金Project supported by the Collaborative Research and Development Program of Natural Sciences and Engineering Research Council of Canada
文摘The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved.Meanwhile,it is believed that frother transport between phases is perhaps the most important reason for the interactive nature of the phenomena occurring in the bulk and froth phases in flotation,as frother adsorbed in the surface of rising bubbles is removed from the bulk phase and then released into the froth as a fraction of the bubbles burst.This causes the increased concentration in the froth compared to the bulk concentration,named as frother partitioning.Partitioning reflects the adsorption of frother on bubbles and how to influence bubble size is not known.There currently exists no such a topic aiming to link these two key parameters.To fill this vacancy,the correspondence between bubble size and frother partitioning was examined.Bubble size was measured by sampling-for-imaging(SFI)technique.Using total organic carbon(TOC)analysis to measure the frother partitioning between froth and bulk phases was determined.Measurements have shown,with no exceptions including four different frothers,higher frother concentration is in the bulk than in the froth.The results also show strong partitioning giving an increase in bubble size which implies there is a compelling relationship between these two,represented by CFroth/CBulk and D32.The CFroth/CBulkand D32 curves show similar exponential decay relationships as a function of added frother in the system,strongly suggesting that the frother concentration gradient between the bulk solution and the bubble interface is the driving force contributing to bubble size reduction.
基金Project supported by the Chair in Mineral Processing at McGill University,under the Collaborative Research and Development Program of NSERC(Natural Sciences and Engineering Research Council of Canada)with industrial sponsorship from Vale,Teck Cominco,Xstrata Process Support,Agnico-Eagle,Shell Canada,Barrick Gold,COREM,SGS Lakefield Research and Flottec
文摘Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill Bubble Size Analyzer(MBSA) or bubble viewer that has been developed and completed by McGill University's Mineral Processing Group during the last decade is a unique instrument to serve this purpose.Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber.Results show that there is no difference in Sauter mean(D32) when tap or de-ionized water was used instead of process water.However,the frother concentration,in this research DowFroth 250(DF250),inside the chamber exhibited a pronounced effect on bubble size.Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications.It was also noted that the frother concentration which has been so far practiced in plant measurements(CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.