In the light of the knowledge gained by the study of electrochemical flotation for galena and selective flotation of galena from lead zinc iron sulfide ores, a technology for accurate potential control based on intrin...In the light of the knowledge gained by the study of electrochemical flotation for galena and selective flotation of galena from lead zinc iron sulfide ores, a technology for accurate potential control based on intrinsic electrochemical behavior in grinding flotation systems has been developed and is called "Original Potential Flotation (OPF)". The optimum conditions for the original potential flotation of galena from Pb Zn Fe sulfide ores are as follows: pH values of 12.5 12.8, potential of 150 180 mV and with diethyldithioncarbamate (DDTC) as collector. Lime is used as a regulator of pH, meanwhile, and can stabilize special potential very well, and this special potential is exactly the flotation potential of galena. This technology has been applied successfully in potential control flotation of galena in many complex lead zinc iron sulfide mines in China.展开更多
Using sodium diethyldithiocarbamate as a collector the flotation behavior of pyrrhotite was investigated. The relationship between potential and pH range for pyrrhotite flotation was established. The results show that...Using sodium diethyldithiocarbamate as a collector the flotation behavior of pyrrhotite was investigated. The relationship between potential and pH range for pyrrhotite flotation was established. The results show that the flotation of pyrrhotite is dependent on pulp potential at certain pH values. Pyrrhotite has good floatability from pH 2 to pH 12, and poor flotability at pH>12. Cyclic voltammetry and Fourier transform infrared spectrum analysis show that the major adsorption product of DDTC on pyrrhotite is tetraethylthiuram disulfide. The intensity of Fourier transform infrared signals of tetraethylthiuram disulfide adsorbed on pyrrhotite and the anode current of a pyrrhotite electrode and flotation response of pyrrhotite are correlated with pulp potentials.展开更多
文摘In the light of the knowledge gained by the study of electrochemical flotation for galena and selective flotation of galena from lead zinc iron sulfide ores, a technology for accurate potential control based on intrinsic electrochemical behavior in grinding flotation systems has been developed and is called "Original Potential Flotation (OPF)". The optimum conditions for the original potential flotation of galena from Pb Zn Fe sulfide ores are as follows: pH values of 12.5 12.8, potential of 150 180 mV and with diethyldithioncarbamate (DDTC) as collector. Lime is used as a regulator of pH, meanwhile, and can stabilize special potential very well, and this special potential is exactly the flotation potential of galena. This technology has been applied successfully in potential control flotation of galena in many complex lead zinc iron sulfide mines in China.
文摘Using sodium diethyldithiocarbamate as a collector the flotation behavior of pyrrhotite was investigated. The relationship between potential and pH range for pyrrhotite flotation was established. The results show that the flotation of pyrrhotite is dependent on pulp potential at certain pH values. Pyrrhotite has good floatability from pH 2 to pH 12, and poor flotability at pH>12. Cyclic voltammetry and Fourier transform infrared spectrum analysis show that the major adsorption product of DDTC on pyrrhotite is tetraethylthiuram disulfide. The intensity of Fourier transform infrared signals of tetraethylthiuram disulfide adsorbed on pyrrhotite and the anode current of a pyrrhotite electrode and flotation response of pyrrhotite are correlated with pulp potentials.