The floatability of different crystalline structures of pyrrhotite(monoclinic and hexagonal) was studied.It is shown that the floatability of monoclinic and hexagonal has obvious difference,and that the flotation reco...The floatability of different crystalline structures of pyrrhotite(monoclinic and hexagonal) was studied.It is shown that the floatability of monoclinic and hexagonal has obvious difference,and that the flotation recovery of monoclinic pyrrhotite is larger than that of hexagonal pyrrhotite using different collectors.When butyl dithiophosphate is used as the collector,the recovery is larger than that by sodium butyl xanthate and sodium diethyl dithiocarbamate.At the pH values ranging from 6 to 9,monoclinic pyrrhotite can be floated well,and the flotation recovery is higher than 90%.Monoclinic and hexagonal pyrrhotites are more easily activated by Cu2+ in acidic conditions than in alkaline conditions.But Cu2+ cannot activate hexagonal pyrrhotite using sodium diethyldithiocarbamate as the collector.By the measurement of contact angle,it is indicated that monoclinic and hexagonal pyrrhotites float well and are easily activated by Cu2+ when dithiophosphate is used as the collector.Using sodium diethyl dithiocarbamate as a collector,the relationship between potential and pH range for pyrrhotite flotation is established.At pH 5,the optimal potential range for flotation of monoclinic pyrrhotite is about 125-580 mV(vs SHE),with the maximum flotation occurring at about 350 mV(vs SHE);the optimal potential range for flotation of hexagonal pyrrhotite is 200?580 mV(vs SHE),with the maximum flotation occurring at about 300 mV(vs SHE).展开更多
To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The ...To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The approaches of micro-flotation,adsorption test and zeta potential measurement were adopted to reveal the mechanism of ion activation.The results show that Pb^(2+),Cu^(2+) and Fe^(3+) are effective activators for the flotation of quartz in butyl xanthate solution because of their absorption on activated quartz surface.Average recoveries of fine particles(<37 μm) are greater than those of coarser particles(37-74 μm),suggesting that the former is easier to be activated and more likely to be floated and thus entrained in sulphide concentrate.From another perspective,addition of metallic ions(Pb^(2+),Cu^(2+) and Fe^(3+)) renders zeta potentials move positively,and addition of the same metallic ions and butyl xanthate makes zeta potential drop apparently,which support a mechanism where they adsorb onto quartz surface,resulting in an expected increase in butyl xanthate collector adsorption with a concomitant increase in the flotation recoveries.展开更多
The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neu...The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neutral conditions.The flotation recovery of pure hematite,siderite,and quartz in the oleate-starch-CaCl2 system is significantly different when the slurry pH varies from 4 to 12.A novel two-step flotation process was developed for the separation of iron concentrate from Donganshan carbonaceous iron ore through which the siderite concentrate is first recovered and the high quality hematite concentrates with relative high iron recovery can be obtained in the second step flotation.The siderite concentrate may be utilized directly or undergo further concentration steps to increase iron grade.展开更多
基金Project(50774094) supported by the National Natural Science Foundation of China
文摘The floatability of different crystalline structures of pyrrhotite(monoclinic and hexagonal) was studied.It is shown that the floatability of monoclinic and hexagonal has obvious difference,and that the flotation recovery of monoclinic pyrrhotite is larger than that of hexagonal pyrrhotite using different collectors.When butyl dithiophosphate is used as the collector,the recovery is larger than that by sodium butyl xanthate and sodium diethyl dithiocarbamate.At the pH values ranging from 6 to 9,monoclinic pyrrhotite can be floated well,and the flotation recovery is higher than 90%.Monoclinic and hexagonal pyrrhotites are more easily activated by Cu2+ in acidic conditions than in alkaline conditions.But Cu2+ cannot activate hexagonal pyrrhotite using sodium diethyldithiocarbamate as the collector.By the measurement of contact angle,it is indicated that monoclinic and hexagonal pyrrhotites float well and are easily activated by Cu2+ when dithiophosphate is used as the collector.Using sodium diethyl dithiocarbamate as a collector,the relationship between potential and pH range for pyrrhotite flotation is established.At pH 5,the optimal potential range for flotation of monoclinic pyrrhotite is about 125-580 mV(vs SHE),with the maximum flotation occurring at about 350 mV(vs SHE);the optimal potential range for flotation of hexagonal pyrrhotite is 200?580 mV(vs SHE),with the maximum flotation occurring at about 300 mV(vs SHE).
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China+1 种基金Project(2016RS2016)supported by Hunan Provincial Science and Technology Leader(Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources),ChinaProject supported by the Postdoctoral Research Station of Central South University,China
文摘To investigate effect of metallic ion activation on different particle sizes of quartz in butyl xanthate solution,six common ions(Pb^(2+),Cu^(2+),Fe^(3+),Fe^(2+),Mg^(2+) and Ca^(2+)) were introduced as activators.The approaches of micro-flotation,adsorption test and zeta potential measurement were adopted to reveal the mechanism of ion activation.The results show that Pb^(2+),Cu^(2+) and Fe^(3+) are effective activators for the flotation of quartz in butyl xanthate solution because of their absorption on activated quartz surface.Average recoveries of fine particles(<37 μm) are greater than those of coarser particles(37-74 μm),suggesting that the former is easier to be activated and more likely to be floated and thus entrained in sulphide concentrate.From another perspective,addition of metallic ions(Pb^(2+),Cu^(2+) and Fe^(3+)) renders zeta potentials move positively,and addition of the same metallic ions and butyl xanthate makes zeta potential drop apparently,which support a mechanism where they adsorb onto quartz surface,resulting in an expected increase in butyl xanthate collector adsorption with a concomitant increase in the flotation recoveries.
基金Project(2006DFB72570) supported by the Grand Project of International Cooperation of Ministry of Science and Technology of China
文摘The flotation of pure and natural carbonaceous iron ore samples in the oleate flotation system was investigated.Starch can depress hematite effectively in a wide pH range,but cannot depress siderite efficiently in neutral conditions.The flotation recovery of pure hematite,siderite,and quartz in the oleate-starch-CaCl2 system is significantly different when the slurry pH varies from 4 to 12.A novel two-step flotation process was developed for the separation of iron concentrate from Donganshan carbonaceous iron ore through which the siderite concentrate is first recovered and the high quality hematite concentrates with relative high iron recovery can be obtained in the second step flotation.The siderite concentrate may be utilized directly or undergo further concentration steps to increase iron grade.