采用曝气生物滤池(BAF)+微涡流高效沉淀+流砂过滤器+超滤+反渗透工艺用于煤化工废水深度处理及回用。实际运行结果表明,进水电导率在1.8~3.5 m S/cm时,RO产水电导平均为65μS/cm,脱盐率在96%以上,所有指标满足中石油《炼油化工企业污水...采用曝气生物滤池(BAF)+微涡流高效沉淀+流砂过滤器+超滤+反渗透工艺用于煤化工废水深度处理及回用。实际运行结果表明,进水电导率在1.8~3.5 m S/cm时,RO产水电导平均为65μS/cm,脱盐率在96%以上,所有指标满足中石油《炼油化工企业污水回用管理导则》优质再生水的相关标准。RO浓水采用异相催化氧化+高效生化工艺,出水COD≤50 mg/L,NH_3-N、SS的质量浓度分别≤12、≤30 mg/L,满足DB 61/224-2011一级标准,达标排放。直接运行费用合计1.83元/m^3。展开更多
A laboratory scale up-flow biological activated carbon(BAC) reactor was constructed for the advanced treatment of synthetic flotation wastewater. Biodegradation of a common collector(i.e., ethyl xanthate) for non-ferr...A laboratory scale up-flow biological activated carbon(BAC) reactor was constructed for the advanced treatment of synthetic flotation wastewater. Biodegradation of a common collector(i.e., ethyl xanthate) for non-ferrous metallic ore flotation was evaluated. The results show that the two stages of domestication can improve microbial degradation ability. The BAC reactor obtains a chemical oxygen demand(COD) reduction rate of 82.5% for ethyl xanthate and its effluent COD concentration lowers to below 20 mg/L. The kinetics equation of the BAC reactor proves that the activated carbon layers at the height of 0 mm to 70 mm play a key role in the removal of flotation reagents. Ultraviolet spectral analysis indicates that most of the ethyl xanthate are degraded by microorganisms after advanced treatment by the BAC reactor.展开更多
基金Project(201209013)supported by Special Fund for Environmental Scientific Research in the Public Interest,China
文摘A laboratory scale up-flow biological activated carbon(BAC) reactor was constructed for the advanced treatment of synthetic flotation wastewater. Biodegradation of a common collector(i.e., ethyl xanthate) for non-ferrous metallic ore flotation was evaluated. The results show that the two stages of domestication can improve microbial degradation ability. The BAC reactor obtains a chemical oxygen demand(COD) reduction rate of 82.5% for ethyl xanthate and its effluent COD concentration lowers to below 20 mg/L. The kinetics equation of the BAC reactor proves that the activated carbon layers at the height of 0 mm to 70 mm play a key role in the removal of flotation reagents. Ultraviolet spectral analysis indicates that most of the ethyl xanthate are degraded by microorganisms after advanced treatment by the BAC reactor.