期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于维持种群多样性的测试数据生成算法的研究 被引量:2
1
作者 王建民 蔡媛 《计算机研究与发展》 EI CSCD 北大核心 2012年第5期1039-1048,共10页
测试数据自动化生成技术尝试寻找一个相对小的数据集来满足测试充分性标准,以降低软件测试的成本,提高测试效率.当测试项的数据集大小超过其上限时,算法会使用淘汰算法把差异性较小的测试数据从集合中淘汰掉,把差异性较大的测试数据留下... 测试数据自动化生成技术尝试寻找一个相对小的数据集来满足测试充分性标准,以降低软件测试的成本,提高测试效率.当测试项的数据集大小超过其上限时,算法会使用淘汰算法把差异性较小的测试数据从集合中淘汰掉,把差异性较大的测试数据留下来,以维持种群的多样性.针对此问题,提出一种基于维持种群多样性的演化算法来求解测试数据集,算法利用启发信息迭代地选择一个条件?判定语句作为子目标,通过演化算法生成数据以覆盖目标.在此算法框架内,利用一种新的计算评估值的方法计算数据与测试项的距离信息;以及利用归一的曼哈顿距离计算测试数据差异性,通过淘汰策略把差异性较小的测试数据淘汰掉.在实验中,对14个计算机科学基础算法的基准函数进行了测试,并与现有文献中的测试数据生成方法进行对比,验证了算法有效提高了条件?判定覆盖率,并且减少了测试数据的生成数量,提高了测试性能. 展开更多
关键词 结构化测试 测试数据自动化生成 测试用例 条件/判定覆盖 元启发式搜索技术
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部