期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
中国地震重力监测体系的结构与能力 被引量:71
1
作者 贾民育 詹洁晖 《地震学报》 CSCD 北大核心 2000年第4期360-367,共8页
对我国现行地震重力监测网和“中国地壳运动观测网络”工程实施后形成的中国地震重力监测体系的结构和能力进行了评估 ,得到的主要结论有 :1现行的地震重力监测网对 5级左右地震有较好的监测预报能力 ,但对 6级以上强震因测网范围太小... 对我国现行地震重力监测网和“中国地壳运动观测网络”工程实施后形成的中国地震重力监测体系的结构和能力进行了评估 ,得到的主要结论有 :1现行的地震重力监测网对 5级左右地震有较好的监测预报能力 ,但对 6级以上强震因测网范围太小而无此能力 ;2网络工程实施后的中国地震重力监测体系 ,对 7级以上大震有较好的监测预报能力 ,但对 6级左右至 7级地震 。 展开更多
关键词 重力时变 地震预报 测网结构 能力
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
2
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部