针对先进高性能飞行器对高精度大气数据的测控需求,研发设计了一套适用于亚声速飞行器的嵌入式大气数据传感(flush air data sensing,FADS)系统。该系统首先基于数值建模技术建立了FADS系统模型的压力数据库,并针对建模数据精度及风洞...针对先进高性能飞行器对高精度大气数据的测控需求,研发设计了一套适用于亚声速飞行器的嵌入式大气数据传感(flush air data sensing,FADS)系统。该系统首先基于数值建模技术建立了FADS系统模型的压力数据库,并针对建模数据精度及风洞试验校准数据分析了Ma=0.2~0.4对应的压力误差限;其次,开发了攻角实时解算算法,并集成到工程原理样机中;最后基于风洞试验和飞行试验对FADS系统的实时解算算法及样机进行了系统评估,并通过事后模型算法对攻角进行重新解算以评估攻角实时解算算法的可靠性。结果表明:(1)与机载惯性导航系统等其他独立测试系统解算的数据相比,飞行试验中FADS系统采用的攻角实时解算方法精度整体较好,攻角误差小于1°,在关键段小于0.5°;基于不同模型建立的FADS系统攻角解算方法得到的攻角数值基本一致,证实了开发的实时解算算法的可靠性。(2)基于风洞试验及飞行试验数据对算法误差限的考核结果显示,飞行试验初始阶段实时解算的攻角值产生波动是压力输入波动误差限较大造成的,高空低速时的压力波动幅值大是实时解算攻角值偏差较大的主要原因;建立的FADS系统的攻角解算方法在算法误差限范围内的压力波动对攻角解算值影响较小,但超过算法误差限的压力波动对攻角解算值影响显著。高空低速飞行器FADS系统对测压传感器精度水平及工程实施水平要求较高,在实际工程应用中应尽量保证测压传感器的精度水平。展开更多
针对亚声速飞行器对高精度飞行参数的测控需求,研发了一套亚声速嵌入式大气数据传感(flush air data sensing,FADS)系统,集成工程样机,并通过风洞试验及飞行试验进行系统考核评估。基于计算流体动力学(computational fluid dynamics,CFD...针对亚声速飞行器对高精度飞行参数的测控需求,研发了一套亚声速嵌入式大气数据传感(flush air data sensing,FADS)系统,集成工程样机,并通过风洞试验及飞行试验进行系统考核评估。基于计算流体动力学(computational fluid dynamics,CFD)方法首先建立FADS系统压力数据库,并通过风洞试验考核了模型算法在低亚声速时的误差限;其次,集成融合实时解算算法的FADS工程原理样机;最后通过飞行试验考核了工程样机的工程适用性。结果表明:(1)与机载的其他独立测试系统相比,FADS攻角实时解算精度高,攻角偏差≤1°,关键段攻角偏差≤0.5°;事后重建的攻角数据与飞行试验FADS系统实时解算数据一致,证实FADS实时攻角解算方法可靠;(2)风洞及飞行试验校核数据表明,FADS实时攻角输出数据在飞行试验初始段的波动是由输入压力波动较大导致,特别是在高空低速段,输入压力波动幅值超过算法的误差限,导致实时攻角解算数值波动较大;(3)CFD仿真结果表明,输入压力波动位于算法误差限内对攻角输出精度影响较小,超过算法误差限的压力幅值波动对实时攻角输出精度影响极大。高空低速飞行器FADS系统对压力传感器等硬件精度及工程实现水平要求较高,应尽量保证工程实施精度。展开更多
In order to study pillar and overburden response to retreat mining, a ground control program was conducted at a Central Appalachian Mine. The program consisted of several monitoring methods including a seismic monitor...In order to study pillar and overburden response to retreat mining, a ground control program was conducted at a Central Appalachian Mine. The program consisted of several monitoring methods including a seismic monitoring system, borehole pressure cells in the pillars, and time-lapse photogrammetry of the pillar ribs. Two parallel geophone arrays were installed, one on each side of the panel with the sensors mounted 3 m into the roof. A total of fourteen geophones recorded more than 5000 events during the panel retreat. A MIDAS datalogger was used to record pressure from borehole pressure cells(BPCs)located in two adjacent pillars that were not mined during retreat. A series of photographs were taken of the pillars that had the BPCs as the face approached so that deformation of the entire rib could be monitored using photogrammetry. Results showed that pillar stability and cave development were as expected. The BPCs showed an increase in loading when the face was 115 m inby and a clear onset of the forward abutment at 30 m. The photogrammetry results displayed pillar deformation corresponding to the increased loading. The microseismic monitoring results showed the overburden caving inby the face, again as expected. The significance of these results lies in two points,(1) we can quantify the safe manner in which this mine is conducting retreating operations, and(2) we can use volumetric technologies(photogrammetry and microseismic) to monitor entire volumes of the mine in addition to the traditional point-location geotechnical measurements(BPCs).展开更多
Breaking waves can have tremendous destructive impact on vertical walls, yet they are poorly understood. By using particle imaging velocimetry (PIV) technology and high-precision pressure transducers, actual breakin...Breaking waves can have tremendous destructive impact on vertical walls, yet they are poorly understood. By using particle imaging velocimetry (PIV) technology and high-precision pressure transducers, actual breaking wave loads on vertical walls were studied. By simultaneously comparing the flow field structure and wave pressure, the mechanisms of breaking wave pressure could be analyzed. The probability distribution of the peak value of the first impact of a breaking wave was investigated. The results showed that the impact pressure p is mainly distributed in the range of 0.25-2.75 pv2, with the greatest possible probability at p/pv2 = 0.75.展开更多
Due to the difficulty and weakness of current stress measurement methods in deep soft rock, a new rheological stress recovery method of the determination of the three-dimensional(3D) stress tensor is proposed. It is s...Due to the difficulty and weakness of current stress measurement methods in deep soft rock, a new rheological stress recovery method of the determination of the three-dimensional(3D) stress tensor is proposed. It is supposed that rock stresses will recovery gradually with time and can be measured by embedding transducers into the borehole. In order to explore the applicability and accuracy of this method, analytical solutions are developed for stress measurement with the rheological stress recovery method in a viscoelastic surrounding rock, the rheological properties of which are depicted as both the Burger's model and a 3-parameter solid model. In such conditions, explicit analytical expressions for predicting time-dependent pressures on the transducer are derived. A parametric analysis is then adopted to investigate the influences of the grout solidification time and the mechanical properties of the grout layer. The results indicate that this method is suitable for stress measurement in deep soft rock, the characteristics of which are soft, fractured and subjected to high geo-stress.展开更多
文摘针对先进高性能飞行器对高精度大气数据的测控需求,研发设计了一套适用于亚声速飞行器的嵌入式大气数据传感(flush air data sensing,FADS)系统。该系统首先基于数值建模技术建立了FADS系统模型的压力数据库,并针对建模数据精度及风洞试验校准数据分析了Ma=0.2~0.4对应的压力误差限;其次,开发了攻角实时解算算法,并集成到工程原理样机中;最后基于风洞试验和飞行试验对FADS系统的实时解算算法及样机进行了系统评估,并通过事后模型算法对攻角进行重新解算以评估攻角实时解算算法的可靠性。结果表明:(1)与机载惯性导航系统等其他独立测试系统解算的数据相比,飞行试验中FADS系统采用的攻角实时解算方法精度整体较好,攻角误差小于1°,在关键段小于0.5°;基于不同模型建立的FADS系统攻角解算方法得到的攻角数值基本一致,证实了开发的实时解算算法的可靠性。(2)基于风洞试验及飞行试验数据对算法误差限的考核结果显示,飞行试验初始阶段实时解算的攻角值产生波动是压力输入波动误差限较大造成的,高空低速时的压力波动幅值大是实时解算攻角值偏差较大的主要原因;建立的FADS系统的攻角解算方法在算法误差限范围内的压力波动对攻角解算值影响较小,但超过算法误差限的压力波动对攻角解算值影响显著。高空低速飞行器FADS系统对测压传感器精度水平及工程实施水平要求较高,在实际工程应用中应尽量保证测压传感器的精度水平。
文摘针对亚声速飞行器对高精度飞行参数的测控需求,研发了一套亚声速嵌入式大气数据传感(flush air data sensing,FADS)系统,集成工程样机,并通过风洞试验及飞行试验进行系统考核评估。基于计算流体动力学(computational fluid dynamics,CFD)方法首先建立FADS系统压力数据库,并通过风洞试验考核了模型算法在低亚声速时的误差限;其次,集成融合实时解算算法的FADS工程原理样机;最后通过飞行试验考核了工程样机的工程适用性。结果表明:(1)与机载的其他独立测试系统相比,FADS攻角实时解算精度高,攻角偏差≤1°,关键段攻角偏差≤0.5°;事后重建的攻角数据与飞行试验FADS系统实时解算数据一致,证实FADS实时攻角解算方法可靠;(2)风洞及飞行试验校核数据表明,FADS实时攻角输出数据在飞行试验初始段的波动是由输入压力波动较大导致,特别是在高空低速段,输入压力波动幅值超过算法的误差限,导致实时攻角解算数值波动较大;(3)CFD仿真结果表明,输入压力波动位于算法误差限内对攻角输出精度影响较小,超过算法误差限的压力幅值波动对实时攻角输出精度影响极大。高空低速飞行器FADS系统对压力传感器等硬件精度及工程实现水平要求较高,应尽量保证工程实施精度。
基金supported by a NIOSH Ground Control Capacity Building grant
文摘In order to study pillar and overburden response to retreat mining, a ground control program was conducted at a Central Appalachian Mine. The program consisted of several monitoring methods including a seismic monitoring system, borehole pressure cells in the pillars, and time-lapse photogrammetry of the pillar ribs. Two parallel geophone arrays were installed, one on each side of the panel with the sensors mounted 3 m into the roof. A total of fourteen geophones recorded more than 5000 events during the panel retreat. A MIDAS datalogger was used to record pressure from borehole pressure cells(BPCs)located in two adjacent pillars that were not mined during retreat. A series of photographs were taken of the pillars that had the BPCs as the face approached so that deformation of the entire rib could be monitored using photogrammetry. Results showed that pillar stability and cave development were as expected. The BPCs showed an increase in loading when the face was 115 m inby and a clear onset of the forward abutment at 30 m. The photogrammetry results displayed pillar deformation corresponding to the increased loading. The microseismic monitoring results showed the overburden caving inby the face, again as expected. The significance of these results lies in two points,(1) we can quantify the safe manner in which this mine is conducting retreating operations, and(2) we can use volumetric technologies(photogrammetry and microseismic) to monitor entire volumes of the mine in addition to the traditional point-location geotechnical measurements(BPCs).
基金Supported by the National Natural Science Foundation of China under Grant No.50679008
文摘Breaking waves can have tremendous destructive impact on vertical walls, yet they are poorly understood. By using particle imaging velocimetry (PIV) technology and high-precision pressure transducers, actual breaking wave loads on vertical walls were studied. By simultaneously comparing the flow field structure and wave pressure, the mechanisms of breaking wave pressure could be analyzed. The probability distribution of the peak value of the first impact of a breaking wave was investigated. The results showed that the impact pressure p is mainly distributed in the range of 0.25-2.75 pv2, with the greatest possible probability at p/pv2 = 0.75.
基金supported by the National Basic Research Program of China (No.2014CB046904)the National Natural Science Foundation of China (Nos.41130742 and 11302242)
文摘Due to the difficulty and weakness of current stress measurement methods in deep soft rock, a new rheological stress recovery method of the determination of the three-dimensional(3D) stress tensor is proposed. It is supposed that rock stresses will recovery gradually with time and can be measured by embedding transducers into the borehole. In order to explore the applicability and accuracy of this method, analytical solutions are developed for stress measurement with the rheological stress recovery method in a viscoelastic surrounding rock, the rheological properties of which are depicted as both the Burger's model and a 3-parameter solid model. In such conditions, explicit analytical expressions for predicting time-dependent pressures on the transducer are derived. A parametric analysis is then adopted to investigate the influences of the grout solidification time and the mechanical properties of the grout layer. The results indicate that this method is suitable for stress measurement in deep soft rock, the characteristics of which are soft, fractured and subjected to high geo-stress.