期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于特征选择的风机检修流程预测性监控方法
1
作者 郭娜 刘聪 +3 位作者 李彩虹 刘文娟 王雷 曾庆田 《计算机集成制造系统》 EI CSCD 北大核心 2024年第8期2745-2755,共11页
针对风机检修业务流程中存在的操作失误和工作延期等问题,应用业务流程预测性监控方法,预测业务的下一事件、下一事件执行时间和剩余时间,以提醒工作人员预防和避免风险的发生。首先,针对不同预测任务,提出一种基于优先级的特征自选取策... 针对风机检修业务流程中存在的操作失误和工作延期等问题,应用业务流程预测性监控方法,预测业务的下一事件、下一事件执行时间和剩余时间,以提醒工作人员预防和避免风险的发生。首先,针对不同预测任务,提出一种基于优先级的特征自选取策略,并使用LightGBM(Light Gradient Boosting Machine)算法作为特征选择策略的依托预测模型,得到对预测结果有积极影响的输入特征;然后,针对不同预测任务分别采用LightGBM算法和LSTM(Long Short Term Memory)神经网络构建预测模型;最后,经实验评估和分析,在风机检修业务流程中,特征选择策略能够为不同的预测任务提供有效特征,确保预测的准确率,具有实际应用价值。对于不同预测任务而言,LightGBM算法更适用于下一事件任务预测,LSTM模型更适用于时间方面的任务预测。 展开更多
关键词 流程预测性监控 风机检修 特征选择 下一事件 剩余时间
在线阅读 下载PDF
基于XGBoost增量实现业务流程执行结果的预测性监控方法 被引量:1
2
作者 王娇娇 马小雨 +3 位作者 刘畅 俞定国 俞东进 张银珠 《计算机集成制造系统》 EI CSCD 北大核心 2024年第8期2756-2775,共20页
随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需。该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测。但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发... 随着工业制造业务流程智能化提升,以预测执行结果为目标的监控技术成为必需。该技术基于历史执行构建预测模型,从而对正在执行的流程进行结果预测。但现有研究假定流程执行行为一直保持不变,实际上流程在运行中常发生变化(即流程执行发生漂移),因此预测模型也需要适应这种漂移。针对这种情况,受到在线学习思想的启发,提出了基于XGBoost增量实现以流程执行结果为目标的预测流程监控技术,并分别在真实数据集和合成数据集上进行了大量的实验。实验结果表明,基于XGBoost的增量学习技术能够很好地为工业制造真实场景中的预测性流程监控提供一种有效的解决方案。 展开更多
关键词 预测性业务流程监控 XGBoost 增量学习 概念漂移
在线阅读 下载PDF
基于概念漂移的预测性业务流程监控方法
3
作者 黄华 杨子仪 +1 位作者 李小龙 李闯 《计算机应用》 CSCD 北大核心 2024年第10期3167-3176,共10页
为解决现有的业务流程监控(BPM)方法的模型精度随时间下降和实时性较差的问题,提出一种基于概念漂移的预测性业务流程监控(PPM)方法。首先,对事件日志数据进行预处理及编码;其次,利用双向长短时记忆(BiLSTM)网络模型从前后方向捕获足够... 为解决现有的业务流程监控(BPM)方法的模型精度随时间下降和实时性较差的问题,提出一种基于概念漂移的预测性业务流程监控(PPM)方法。首先,对事件日志数据进行预处理及编码;其次,利用双向长短时记忆(BiLSTM)网络模型从前后方向捕获足够的序列信息以构建业务流程模型,并利用注意力机制充分考虑不同事件对预测结果的贡献程度,赋予事件日志不同的权重,从而减少噪声对预测结果的影响;最后,将正在执行的实例输入构建的模型,得到预测的执行结果,并将这些结果作为历史数据对模型微调。在8个公开且真实的数据集上的测试结果表明,所提方法的平均预测准确率相较于支持向量机(SVM)、逻辑回归(LR)和随机森林(RF)等已有的BPM方法提升了5.4%~23.8%,且早期性和时间性能都优于现有的研究方法。 展开更多
关键词 概念漂移 预测性业务流程监控 业务流程管理 事件日志 双向长短时记忆 注意力机制
在线阅读 下载PDF
基于概念漂移检测的数字孪生流程预测模型 被引量:1
4
作者 熊正云 方贤文 《计算机应用研究》 CSCD 北大核心 2024年第7期2039-2045,共7页
预测性流程监控可以在业务流程运行过程中提供及时的信息,以便采取措施来应对潜在风险,如何提高流程预测的准确度一直受到高度关注。现有的研究方法大部分都在静态环境下引入,很少有结合数字孪生技术用于动态环境的流程预测。为此,提出... 预测性流程监控可以在业务流程运行过程中提供及时的信息,以便采取措施来应对潜在风险,如何提高流程预测的准确度一直受到高度关注。现有的研究方法大部分都在静态环境下引入,很少有结合数字孪生技术用于动态环境的流程预测。为此,提出了一个基于概念漂移检测的方法,并构建数字孪生流程预测模型(digital twin based on concept drift,DTBCD)预测下一个活动。首先利用事件流行为关系和权重散度将流程中的活动进行特征提取,得到数据流的特征集,其次进行漂移检测,动态选择特征集输入人工智能模型中训练并预测下一个活动,然后运用物联网和云计算等先进技术创建数字孪生虚拟环境,最后得到基于概念漂移的数字孪生模型。通过公开可用的数据集进行评估分析,实验结果表明,提出的方法能够有效提高预测的准确性。 展开更多
关键词 预测性流程监控 活动预测 漂移检测 数字孪生
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部