期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
融合简单线性迭代聚类的高光谱混合像元分解策略 被引量:4
1
作者 张飞飞 孙旭 +2 位作者 薛良勇 高连如 刘长星 《农业工程学报》 EI CAS CSCD 北大核心 2015年第17期199-206,共8页
高光谱图像中的混合像元问题广泛存在,混合像元的分解效率一直是遥感应用研究的难点和热点。目前成熟的端元提取算法有纯像元指数(pure pixel index,PPI)、内部最大体积法(N-FINDR)、顶点成分分析(vertex component analysis,VCA... 高光谱图像中的混合像元问题广泛存在,混合像元的分解效率一直是遥感应用研究的难点和热点。目前成熟的端元提取算法有纯像元指数(pure pixel index,PPI)、内部最大体积法(N-FINDR)、顶点成分分析(vertex component analysis,VCA)、顺序最大角凸锥(sequential maximum angle convex cone,SMACC)、交替最大体积法(alternating volume maximization,AVMAX)、最小体积封闭单形体(minimum volume enclosing simplex,MVES)等,这些算法从图像所有像元中提取纯光谱,具有提取速度慢、精度不高的缺点。为此,该文引入了一种融合简单线性迭代聚类(simple linear iterative clustering,SLIC)超像元分割的高光谱混合像元分解算法。超像元分割技术能够将具有相似特征的相邻像元组成图像块,并保留进一步进行图像处理的有效信息,从而大幅减少参与端元提取的像元数量,为解决上述问题提供了有效的途径。通过试验对比了降维方式(主成分分析和最大噪声分数)、RGB对应关系(6种)、色彩空间RGB(red,green,blue)和LAB(lightness-A-B)、数据格式(JPG,BIN)和算法参数K对高光谱图像超像元分割结果的影响,并进一步分析了SLIC超像元分割结果对2种典型端元提取算法(AVMAX、MVES)产生的不同效果。试验结果表明,随着K值的增大,混合像元分解的时间逐渐增加,均方根误差(root mean square error,RMSE)持平或减少,而JPG(有损压缩)数据格式的时间始终比BIN(无损压缩)数据格式的要短。SLIC+MVES的RMSE略高于MVES的RMSE,低于AVMAX的RMSE,但时间远小于MVES。当K足够大的时候,SLIC+MVES的效果就近似MVES的效果了。在大部分情况下,最大噪声分数的降维效果优于主成分分析。以最大噪声分数作为降维方法、以JPG作为数据格式、以LAB作为色彩空间对混合像元分解结果较为有利。另外,SLIC的参数K的取值在5-10之间较为合适。该研究中的SLIC超像元分割算法简单易行,并且提高了混合像元分解的效率,具备很好的实用价值。 展开更多
关键词 像元 光谱分析 算法 简单线性 超像元
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
2
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊C均值 简单线性 K-means++算法
在线阅读 下载PDF
基于NMI特征的遥感影像线性迭代聚类超像素分割算法 被引量:4
3
作者 李静 《光学精密工程》 EI CAS CSCD 北大核心 2022年第6期734-742,共9页
针对现有基于简单线性迭代聚类(SLIC)的超像素分割算法用于细节丰富的遥感图像处理时,存在的易受噪声干扰、过分割问题,本文提出一种结合超像素块之间基于归一化转动惯量(NMI)特征的相似性度量的遥感影像分割方法,对分割效果进行改善。... 针对现有基于简单线性迭代聚类(SLIC)的超像素分割算法用于细节丰富的遥感图像处理时,存在的易受噪声干扰、过分割问题,本文提出一种结合超像素块之间基于归一化转动惯量(NMI)特征的相似性度量的遥感影像分割方法,对分割效果进行改善。本文首先利用引导滤波算法对影像进行平滑处理,去除椒盐噪点;再通过现有的线性迭代聚类算法对影像进行像素级分割,生成初始的超像素;进而确定出微小超像素块,然后计算其与相邻超像素块的相似性度量值,将其合并入差异性最小的相邻超像素块,达到分割影像的目的。本文方法在传统分割算法基础上降低了超像素对噪声的敏感性,提高了影像分割的精度。实验表明,论文提出算法可将测试遥感图像的分割超像素块数量由4 171减小为282,微小超像素块数量减少60%以上,有效降低噪声点的影响,改善以往算法存在的过分割缺陷。 展开更多
关键词 简单线性 超像素 区域合并 归一化转动惯量
在线阅读 下载PDF
基于超像素和改进迭代图割算法的图像分割 被引量:6
4
作者 戴庆焰 朱仲杰 +1 位作者 段智勇 李伟杰 《计算机工程》 CAS CSCD 北大核心 2016年第7期220-226,共7页
基于经典的图割(Graph cut)理论,提出一种基于超像素和改进Graph cut算法的图像分割算法。采用改进简单线性迭代聚类算法,得到前景边缘信息保存较完整的超像素图像。以超像素为处理单元,通过融合颜色、梯度等信息重建能量函数,并基于Gra... 基于经典的图割(Graph cut)理论,提出一种基于超像素和改进Graph cut算法的图像分割算法。采用改进简单线性迭代聚类算法,得到前景边缘信息保存较完整的超像素图像。以超像素为处理单元,通过融合颜色、梯度等信息重建能量函数,并基于Graph cut框架进行分割。仿真结果显示,与Grabcut算法相比,改进算法不仅具有更高的分割精度,提取的目标边缘较完整、光滑,而且大幅提升了分割效率。 展开更多
关键词 图像分割 改进图割算法 简单线性算法 超像素 能量函数
在线阅读 下载PDF
联合改进LBP和超像素级决策的高光谱图像分类 被引量:8
5
作者 王立国 石瑶 张震 《信号处理》 CSCD 北大核心 2023年第1期61-72,共12页
高光谱图像在有标签样本数目较少的情况下进行分类时,除了利用光谱特征外,空间纹理特征也是必不可少的。本文提出了一种利用多尺度多方向局部二值模式(LBP)描述子获取纹理特征,并结合超像素级指导决策的支持向量机分类方法。首先,本文... 高光谱图像在有标签样本数目较少的情况下进行分类时,除了利用光谱特征外,空间纹理特征也是必不可少的。本文提出了一种利用多尺度多方向局部二值模式(LBP)描述子获取纹理特征,并结合超像素级指导决策的支持向量机分类方法。首先,本文方法将传统LBP描述子改进为多尺度多方向LBP描述子,一方面充分考虑了邻域像素之间的关系,另一方面在计算时分别考虑了水平垂直方向和对角方向。其次,在利用统计直方图获得纹理特征时,采用了多个尺寸窗口组合的方式,以获得多范围、高精度的纹理特征。第三,对传统的简单线性迭代聚类(SLIC)超像素分割方法进行改进,重新定义了光谱距离并引入了纹理特征距离,获得更精确的超像素分割图。最后,利用超像素分割图结合多数投票策略,对分类结果进行进一步的指导校正。实验表明,本文方法能够更有效的提取纹理特征,再结合超像素分割图的指导决策,进一步提升高光谱图像的分类性能。 展开更多
关键词 高光谱图像 局部二值模式 纹理特征 超像素分割 简单线性
在线阅读 下载PDF
基于SLIC和主动学习的高光谱遥感图像分类方法 被引量:8
6
作者 赵鹏飞 周绍光 +1 位作者 裔阳 胡屹群 《计算机工程与应用》 CSCD 北大核心 2017年第3期183-187,225,共6页
在主动学习的基础上,提出一种基于SLIC的高光谱遥感图像主动分类方法。首先提取图像纹理特征并与光谱特征融合,使用PCA对新数据进行降维,取前三个主成分构成假彩色图像,然后使用SLIC处理该图像获得超像素;接着随机抽取定量超像素作为初... 在主动学习的基础上,提出一种基于SLIC的高光谱遥感图像主动分类方法。首先提取图像纹理特征并与光谱特征融合,使用PCA对新数据进行降维,取前三个主成分构成假彩色图像,然后使用SLIC处理该图像获得超像素;接着随机抽取定量超像素作为初始训练样本,样本光谱信息为超像素样本中所有像素点的光谱信息均值,样本标签为超像素中出现次数最多的类别;然后通过主动学习得到SVM分类器;最后使用分类器对超像素分类得到其类别,并将超像素类别赋予其包含的像素点,从而达到高光谱遥感图像分类的目的。实验表明:该方法明显降低了主动学习过程的时间消耗,有效地提高了分类效果,其OA,AA和Kappa值显著优于未使用SLIC的主动学习方法。 展开更多
关键词 主动学习 超像素 主成分分析(PCA) 简单线性(SLIC) 支持向量机(SVM)分
在线阅读 下载PDF
基于超像素统计量的随机森林遥感图像分类 被引量:3
7
作者 石彩霞 赵传钢 庞蕾 《计算机应用研究》 CSCD 北大核心 2018年第12期3798-3802,共5页
针对遥感图像地物覆盖分类方法对图像空间分布信息利用不足的问题,提出一种基于超像素统计量的随机森林遥感图像分类方法。以北京市海淀区为研究区,选用Landsat-8卫星为主要数据源,通过改进SLIC超像素分割方法,使之适用于多光谱遥感图... 针对遥感图像地物覆盖分类方法对图像空间分布信息利用不足的问题,提出一种基于超像素统计量的随机森林遥感图像分类方法。以北京市海淀区为研究区,选用Landsat-8卫星为主要数据源,通过改进SLIC超像素分割方法,使之适用于多光谱遥感图像中超像素的分割,提取超像素常见的六个统计量(最小值、最大值、均值、标准差、上四分位数、下四分位数)用于随机森林在遥感图像中的分类。实验结果表明,其对研究区遥感图像的总体分类精度为89. 01%,明显改善了对地物的错分和漏分现象,能够推广到Landsat-8遥感图像的地物覆盖分类工作中。 展开更多
关键词 Landsat-8 随机森林 超像素 地物覆盖 简单线性
在线阅读 下载PDF
融入超像素分割的高分辨率影像面向对象分类 被引量:12
8
作者 聂倩 七珂珂 赵艳福 《测绘通报》 CSCD 北大核心 2021年第6期44-49,共6页
针对高分辨率遥感影像面向对象分类中容易受分割参数的影响、分类精度不稳定的问题,本文提出了一种融入超像素分割的高分辨率影像面向对象分类方法。该方法通过简单线性迭代聚类(SLIC)算法对原始影像进行聚类生成超像素影像,并在此基础... 针对高分辨率遥感影像面向对象分类中容易受分割参数的影响、分类精度不稳定的问题,本文提出了一种融入超像素分割的高分辨率影像面向对象分类方法。该方法通过简单线性迭代聚类(SLIC)算法对原始影像进行聚类生成超像素影像,并在此基础上采用分形网络演化方法(FNEA)进行多尺度分割生成同质性对象,最后利用最邻近分类方法进行地物分类。试验结果表明,该方法不易受多尺度分割参数的影响,分类效果稳定,而且分类精度明显高于传统的面向对象分类方法,对于高分辨率遥感影像的广泛应用具有重要意义。 展开更多
关键词 高分辨率遥感影像 简单线性 超像素 分形网络演化方法 多尺度分割 面向对象分
在线阅读 下载PDF
基于SLIC超像素分割的非局部均值船舶图像去噪算法 被引量:1
9
作者 王芝磊 冉鑫 《上海海事大学学报》 北大核心 2024年第2期62-67,共6页
针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过S... 针对传统船舶图像去噪算法难以对图像的边缘细节进行保留和分析,以及传统非局部均值去噪算法相似框选择困难等问题,提出基于简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割的非局部均值船舶图像去噪算法。通过SLIC算法对图像进行分割处理,界定图像的纹理区域和平滑区域;使用相似框搜索和匹配策略,提升匹配效果,并适当保留更多边缘细节,从而改善图像去噪的效果。实验结果表明,所提出的算法相较于其他传统的船舶图像去噪算法不仅能很好地保留船舶图像的边缘细节特点,而且能在一定程度上提高船舶图像的峰值信噪比,具有良好的去噪效果,可以用于智能航海领域船舶图像的去噪。 展开更多
关键词 非局部均值去噪 船舶图像去噪 简单线性(SLIC) 超像素分割 相似框选择
在线阅读 下载PDF
融合边缘优化SLIC和A*算法的影像镶嵌线提取 被引量:1
10
作者 常巧梅 张浩 张娟 《遥感信息》 CSCD 北大核心 2024年第3期90-96,共7页
针对遥感影像自动提取镶嵌线穿过独立地物损害地物完整性的问题,提出融合边缘信息优化SLIC和A*算法的影像镶嵌线提取方法。首先,提取影像边缘信息,并将边缘强度因子与影像光谱信息融合;然后,使用优化的简单线性迭代聚类方法对重叠区域... 针对遥感影像自动提取镶嵌线穿过独立地物损害地物完整性的问题,提出融合边缘信息优化SLIC和A*算法的影像镶嵌线提取方法。首先,提取影像边缘信息,并将边缘强度因子与影像光谱信息融合;然后,使用优化的简单线性迭代聚类方法对重叠区域影像进行超像素分割,获取地物完整的超像素,并利用数学形态学算子去除孤立噪声与不完整边界;最后,采用曼哈顿距离启发函数提升A*算法的镶嵌线提取效率,获取最优的镶嵌线提取。分析结果表明,该方法可有效提取影像镶嵌线,避免镶嵌线通过独立建筑物,满足后期正射影像制作要求。 展开更多
关键词 边缘信息 简单线性 A*算法 镶嵌线提取
在线阅读 下载PDF
一种改进的多光谱遥感图像超像素分割算法 被引量:9
11
作者 任伟建 刘泽宇 +3 位作者 霍凤财 康朝海 任璐 张永丰 《吉林大学学报(理学版)》 CAS 北大核心 2022年第2期351-360,共10页
针对简单线性迭代聚类算法在多光谱遥感图像超像素分割中存在的未充分利用图像特征信息及超像素尺寸、数量固定导致分割精度较低的问题,提出将流形-简单线性迭代聚类算法引入到遥感图像超像素分割任务中,并对其进行改进.首先,给出一种... 针对简单线性迭代聚类算法在多光谱遥感图像超像素分割中存在的未充分利用图像特征信息及超像素尺寸、数量固定导致分割精度较低的问题,提出将流形-简单线性迭代聚类算法引入到遥感图像超像素分割任务中,并对其进行改进.首先,给出一种基于彩色局部二进制模式改进的多光谱遥感图像纹理特征提取方法;其次,扩展流形-简单线性迭代聚类算法的光谱空间,使算法可以适应高维图像数据;最后,改进流形-简单线性迭代聚类算法的聚类距离度量,融合图像的多段光谱特征、空间特征及纹理特征对像素进行迭代聚类,实现内容敏感超像素分割.实验结果表明,与现有方法相比,该算法对多光谱遥感图像的超像素分割结果更准确,在边缘召回率、欠分割误差、可达细分精度指标上均有提升,能改善多光谱遥感图像分割预处理方法中精度较低的问题. 展开更多
关键词 多光谱遥感图像 超像素分割 局部二进制模式 流形-简单线性迭代聚类
在线阅读 下载PDF
基于优化卷积神经网络的木材缺陷检测 被引量:31
12
作者 刘英 周晓林 +3 位作者 胡忠康 於亚斌 杨雨图 徐呈艺 《林业工程学报》 CSCD 北大核心 2019年第1期115-120,共6页
针对深度学习中的卷积神经网络算法,在木材无损检测过程中存在缺陷定位不准确、缺陷轮廓和边界信息不完整、识别精度需进一步提高等问题,利用非下采样剪切波变换最优稀疏表示特性,以及简单线性迭代聚类算法能很好地保持像素紧凑度和图... 针对深度学习中的卷积神经网络算法,在木材无损检测过程中存在缺陷定位不准确、缺陷轮廓和边界信息不完整、识别精度需进一步提高等问题,利用非下采样剪切波变换最优稀疏表示特性,以及简单线性迭代聚类算法能很好地保持像素紧凑度和图像边界轮廓的优点,设计了一种优化的卷积神经网络算法,以提高木材无损检测的准确率。首先采用非下采样剪切波变换对采集的木材图像进行简单预处理,保留木材图像的缺陷特征不丢失,降低图像处理的复杂度以及运算量;然后利用卷积神经网络对木材图像实现深层次的算法设计,同时应用简单线性迭代聚类算法对初步模型进行增强改进,提取出相对准确的木材缺陷轮廓;最后通过反复调整参数和调试优化器,优化卷积神经网络算法的收敛速度,提高学习和运算效率,完善卷积神经网络对木材缺陷轮廓的提取,在降低运算复杂度的同时,提高其精度,具有良好的鲁棒性。相比径向基函数(RBF)神经网络、向后反馈-径向基函数(BP-RBF)混合神经网络和卷积神经网络,本算法对木材缺陷具有更好的识别效果,其识别准确率达到98.6%左右,且识别时间相对更短。 展开更多
关键词 木材缺陷识别 卷积神经网络 非下采样剪切波变换 简单线性
在线阅读 下载PDF
一种新的图像超像素分割方法 被引量:12
13
作者 廖苗 李阳 +1 位作者 赵于前 刘毅志 《电子与信息学报》 EI CSCD 北大核心 2020年第2期364-370,共7页
针对现有超像素分割方法无法自动确定合适的超像素数目,以及难以有效贴合图像目标边界等问题,该文提出一种新的利用局部信息进行多层级简单线性迭代聚类的图像超像素分割方法。首先,运用基于局部信息的简单线性迭代聚类(LI-SLIC)对原始... 针对现有超像素分割方法无法自动确定合适的超像素数目,以及难以有效贴合图像目标边界等问题,该文提出一种新的利用局部信息进行多层级简单线性迭代聚类的图像超像素分割方法。首先,运用基于局部信息的简单线性迭代聚类(LI-SLIC)对原始图像进行超像素初分割,然后,根据超像素的色彩标准差对其进行自适应多层级迭代分割,直至每个超像素块的色彩标准差小于预设阈值,最后,利用相邻超像素间的色彩差异对过分割的超像素进行合并。为验证方法的有效性,该文采用Berkeley, Pascal VOC和3Dircadb公共数据库作为实验数据集,并与其他多种超像素分割方法进行了比较。实验结果表明,该文提出的超像素分割方法能更精确贴合图像目标边界,有效抑制图像过分割和欠分割。 展开更多
关键词 图像处理 超像素 局部信息简单线性 多层级分割 超像素合并
在线阅读 下载PDF
基于RealSense深度相机的多特征树干快速识别方法 被引量:9
14
作者 沈跃 庄珍珍 +2 位作者 刘慧 姜建滨 欧鸣雄 《农业机械学报》 EI CAS CSCD 北大核心 2022年第4期304-312,共9页
针对农业机器人在果园定位和导航中,环境背景复杂、光照强度变化大等问题,本文提出了一种基于RGB-D相机并利用颜色、深度、宽度和平行边特征的树干快速识别方法。首先,使用RealSense深度相机获取果园的彩色图像和深度数据;然后,将彩色... 针对农业机器人在果园定位和导航中,环境背景复杂、光照强度变化大等问题,本文提出了一种基于RGB-D相机并利用颜色、深度、宽度和平行边特征的树干快速识别方法。首先,使用RealSense深度相机获取果园的彩色图像和深度数据;然后,将彩色图像转换为HSV颜色空间,再对HSV颜色空间中的S分量进行超像素分割,并将颜色特征和深度特征相近的相邻超像素块进行合并;随后,对深度图像进行树干宽度特征检测,对宽度置信率大于阈值的物体看作是待处理物体;最后,对待处理的物体进行平行边特征检测,在待处理物体边缘区域选择感兴趣区域窗口(ROI)进行边缘检测,搜索可能的树干边缘直边,当物体边缘的置信率R_(B)大于设定的阈值T_(LB)时,则识别为树干。通过对树干的多特征提取,有效提高了在不同环境下树干识别准确率。利用移动机器人平台在果园环境进行试验测试,以检验在强光照、正常光照和弱光照条件下树干识别算法的性能。试验结果表明,本文的树干识别算法在强光照、正常光照和弱光照条件下,树干识别的准确率分别为92.38%、91.35%和89.86%,每帧图像平均耗时分别为0.54、0.66、0.76 s,能够稳定且快速地实现果园环境下树干识别作业。 展开更多
关键词 树干识别 深度相机 光照强度 多特征 简单线性算法
在线阅读 下载PDF
基于多特征融合的树干快速分割算法 被引量:15
15
作者 刘慧 朱晟辉 +1 位作者 沈跃 汤金华 《农业机械学报》 EI CAS CSCD 北大核心 2020年第1期221-229,共9页
针对传统的树干分割算法存在分割精度低、实时性差的问题,提出了一种融合深度特征和纹理特征的树干快速分割算法。首先,通过Realsense深度摄像头采集树干彩色图像和深度图像;随后,采用超像素算法对彩色图像进行分割,并融合深度和纹理相... 针对传统的树干分割算法存在分割精度低、实时性差的问题,提出了一种融合深度特征和纹理特征的树干快速分割算法。首先,通过Realsense深度摄像头采集树干彩色图像和深度图像;随后,采用超像素算法对彩色图像进行分割,并融合深度和纹理相近的相邻超像素块,最后对深度图像进行宽度检测,并对宽度在阈值范围内的物体所属的超像素块进行色调匹配,区分树干与非树干。在室内和室外植株实验中分别运用本文算法、GrabCut算法与K-均值算法进行树干分割,本文算法的平均召回率和平均准确率分别为87. 6%和95. 0%,GrabCut算法分别为78. 0%和92. 8%,K-均值算法分别为80. 2%和89. 1%;本文算法平均耗时为0. 20 s,GrabCut算法为0. 66 s,K-均值算法为4. 42 s。实验结果表明,本文算法的快速分割效果较好,在保证分割精度的同时,简化了识别过程,加快了分割速度,能够应用于室内和室外树干的分割。 展开更多
关键词 树干识别 图像分割 深度特征 纹理特征 简单线性算法
在线阅读 下载PDF
基于SLIC分层分割的无人机图像极小目标检测方法 被引量:6
16
作者 赵坤 张羽君 +1 位作者 张建龙 王勇 《数据采集与处理》 CSCD 北大核心 2017年第4期737-745,共9页
针对无人机可见光图像目标小、对比度弱的问题,本文提出一种基于简单线性迭代聚类(Simple linear iterative clustering,SLIC)分层分割的极小目标检测方法。首先使用预处理方法提高原始图像的对比度,并利用Top-hat融合方法进行初始分割... 针对无人机可见光图像目标小、对比度弱的问题,本文提出一种基于简单线性迭代聚类(Simple linear iterative clustering,SLIC)分层分割的极小目标检测方法。首先使用预处理方法提高原始图像的对比度,并利用Top-hat融合方法进行初始分割以确定目标区域,其次利用SLIC方法完成目标精细分割,并采用改进的具有噪声的基于密度的聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)对SLIC分割结果进行超像素聚类,最后提取目标的邻域熵等多种底层特征,使用特征匹配方式检测目标,获取最终检测结果。本文提出了一种全局检测和局部检测相结合的检测策略,极大提高了检测速度。仿真结果表明,本文方法可以有效提高无人机小目标的检测性能,加速检测速度。 展开更多
关键词 无人机 简单线性 具有噪声的基于密度的方法 融合检测策略
在线阅读 下载PDF
基于SLIC与条件随机场的图像分割算法 被引量:14
17
作者 孙巍 郭敏 《计算机应用研究》 CSCD 北大核心 2015年第12期3817-3820,3824,共5页
针对条件随机场(CRF)模型在参数估计及模型推断阶段时间复杂度较高的问题,引入简单线性迭代聚类(SLIC)的超像素方法,提出一种基于SLIC的条件随机场图像分割算法。该算法首先通过SLIC对图像进行预处理,将图像划分成内部相似性较高的超像... 针对条件随机场(CRF)模型在参数估计及模型推断阶段时间复杂度较高的问题,引入简单线性迭代聚类(SLIC)的超像素方法,提出一种基于SLIC的条件随机场图像分割算法。该算法首先通过SLIC对图像进行预处理,将图像划分成内部相似性较高的超像素区域,然后以超像素作为节点建立CRF图模型,最后通过参数估计及模型推断获得图像分割结果。实验结果表明,基于SLIC的条件随机场图像分割模型在获得较好分割结果的同时,极大缩短了运行时间,提高了分割的效率。 展开更多
关键词 条件随机场 简单线性 超像素 图像分割 参数估计
在线阅读 下载PDF
基于SLIC的改进GrabCut彩色图像快速分割 被引量:15
18
作者 胡志立 郭敏 《计算机工程与应用》 CSCD 北大核心 2016年第2期186-190,270,共6页
GrabCut算法用户交互量少且分割精度高,但它迭代使用GraphCuts的求解模式使得在处理高分辨率图像时,耗时巨大。提出了一种快速GrabCut算法,在高斯混合模型参数估计过程中,通过SLIC算法构建精简的GraphCuts模型以实现加速。通过SLIC算法... GrabCut算法用户交互量少且分割精度高,但它迭代使用GraphCuts的求解模式使得在处理高分辨率图像时,耗时巨大。提出了一种快速GrabCut算法,在高斯混合模型参数估计过程中,通过SLIC算法构建精简的GraphCuts模型以实现加速。通过SLIC算法将原始图像快速地预分割成具有确定边界且区域内相似度高的超像素图,并以此构建精简的网络图。以块内的RGB均值描述超像素特征进行高斯混合模型参数估计。为了提高分割精度,使用得到的GMM参数对原始图像进行分割。实验结果证明了该算法在时效和精度上都有很好的性能。 展开更多
关键词 简单线性(SLIC) 图割 高斯混合模型
在线阅读 下载PDF
基于自适应超像素分割的点刻式DPM区域定位算法研究 被引量:4
19
作者 王娟 王萍 王港 《自动化学报》 EI CSCD 北大核心 2015年第5期991-1003,共13页
为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利... 为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利用近邻传播聚类思想实现自动聚类得到超像素区域,并引入边缘置信度调整超像素边缘,形成自适应边缘简单线性迭代聚类(Adaptive edge simple linear iterative clustering,AE-SLIC)算法.该算法改进了简单线性迭代聚类(Simple linear iterative clustering,SLIC)超像素分割算法存在的未明确界定超像素区域边缘信息和分割数目无法自适应确定等问题;其次,将超像素作为谱聚类中图的顶点进行二次聚类,DPM区域内超像素因相似度高而被聚集为一类,从而完成点刻式DPM区域的精确定位.经实验测试和分析,本文算法得到的超像素分割结果在完整性、运算复杂度等方面优于常见的超像素分割算法.与基于像素点运算的传统定位算法相比,本文算法具有良好的实时性、定位准确率和鲁棒性. 展开更多
关键词 超像素 自适应边缘简单线性算法 精确定位
在线阅读 下载PDF
基于SLIC方法的光照偏强农田图像分割研究 被引量:9
20
作者 陈晓倩 唐晶磊 王栋 《计算机工程与应用》 CSCD 北大核心 2018年第2期177-181,共5页
精准农业是未来农业发展的趋势,而农田图像分割是精准农业的前提与基础。针对光照偏强条件下农田图像高光点区域丢失植物绿色特征对图像分割质量的影响,以SLIC方法和YCrCb颜色空间中的Cg分量为基础,利用不同分类器实现光照偏强条件下农... 精准农业是未来农业发展的趋势,而农田图像分割是精准农业的前提与基础。针对光照偏强条件下农田图像高光点区域丢失植物绿色特征对图像分割质量的影响,以SLIC方法和YCrCb颜色空间中的Cg分量为基础,利用不同分类器实现光照偏强条件下农田图像分割的研究。首先采用SLIC对农田图像进行预处理,获取超像素模块;为避免植物叶面因光照偏强出现高光点区域丢失部分绿色特征,引入YCrCb颜色空间模型中的Cg分量和超绿颜色因子提取特征;为避免监督学习对训练样本要求高,采用半监督学习,将有标签样本和无标签样本进行混合;最后采用不同的分类器进行图像分割,并对实验结果采用混淆矩阵和Kappa系数进行评价。对比实验结果可得,采用距离判别法核函数为diagQuadratic的图像分割效果较其他方法较好,分割正确率较高。 展开更多
关键词 图像分割 不同分 简单线性(SLIC)方法 Cg分量 光照偏强
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部