期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多尺度下凸包改进的贝叶斯模型显著性检测算法 被引量:4
1
作者 鲁文超 段先华 +1 位作者 徐丹 王万耀 《计算机科学》 CSCD 北大核心 2019年第6期295-300,共6页
针对传统基于贝叶斯的显著性检测算法存在的准确率不理想的问题,提出了一种基于多尺度凸包改进贝叶斯模型的显著性检测算法。该算法首先通过流行排序算法(MR)在CIELab颜色空间上对图像的前景进行提取,并将其作为先验图;其次通过高斯金... 针对传统基于贝叶斯的显著性检测算法存在的准确率不理想的问题,提出了一种基于多尺度凸包改进贝叶斯模型的显著性检测算法。该算法首先通过流行排序算法(MR)在CIELab颜色空间上对图像的前景进行提取,并将其作为先验图;其次通过高斯金字塔算法对图像进行降采样,得到3种不同尺度的图像(包括原图),结合经典的Harris算子检测不同尺度图像的角点,求三者的交集,得到更合理的凸包;然后利用颜色直方图结合凸包来计算观察似然概率;最后根据已有的先验图和似然概率,利用贝叶斯模型计算显著图,并进行优化处理得到最终的显著图。为了验证该算法的正确性和有效性,在公开数据集MSRA1000和ECSSD上进行仿真实验。结果表明,该算法不仅能够得到较好的视觉效果,而且召回率、准确率和F-measure等评价指标比传统算法有明显提升。 展开更多
关键词 显著性检测 流形排序算法 凸包 贝叶斯模型 准确率-召回率曲线
在线阅读 下载PDF
显著中心先验和显著-深度概率矫正的RGB-D显著目标检测
2
作者 刘政怡 黄子超 张志华 《电子与信息学报》 EI CSCD 北大核心 2017年第12期2945-2952,共8页
随着深度特征在图像显著检测领域中发挥越来越重要的作用,传统的RGB图像显著检测模型由于未能充分利用深度信息已经不能适用于RGB-D图像的显著检测。该文提出显著中心先验和显著-深度(S-D)概率矫正的RGB-D显著检测模型,使得深度特征和RG... 随着深度特征在图像显著检测领域中发挥越来越重要的作用,传统的RGB图像显著检测模型由于未能充分利用深度信息已经不能适用于RGB-D图像的显著检测。该文提出显著中心先验和显著-深度(S-D)概率矫正的RGB-D显著检测模型,使得深度特征和RGB特征间相互指导,相互补充。首先,依据3维空间权重和深度先验获取深度图像初步显著图;其次,采用特征融合的流形排序算法获取RGB图像的初步显著图。接着,计算基于深度的显著中心先验,并以该先验作为显著权重进一步提升RGB图像的显著检测结果,获取RGB图像最终显著图;再次,计算显著-深度矫正概率,并对深度图的初步显著检测结果使用此概率进行矫正。接着,计算基于RGB的显著中心先验,并以该先验作为显著权重进一步提升深度图像矫正后的显著检测结果,获取深度图像的最终显著图;最后,采用优化框架对深度图像最终显著图进行优化得到RGB-D图像最终的显著图。所有的对比实验都是在公开的数据集NLPR RGBD-1000数据集上进行,实验结果显示该文算法较当前流行的算法有更好的性能。 展开更多
关键词 3维空间权重 特征融合的流形排序算法 显著中心先验 显著-深度概率矫正
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部