TN248.5 2001042439DF/HF化学激光器喷管设计和数值模拟=Nozzle designand numerical simulation method of nozzle flow in DF/HF chemical lasers[刊,中]/袁圣付,华卫红,姜宗福,赵伊君(国防科技大学应用物理系.湖南,长沙(410073))//...TN248.5 2001042439DF/HF化学激光器喷管设计和数值模拟=Nozzle designand numerical simulation method of nozzle flow in DF/HF chemical lasers[刊,中]/袁圣付,华卫红,姜宗福,赵伊君(国防科技大学应用物理系.湖南,长沙(410073))//中国激光.-2001,28(1).-19-21简述了喷管作用和单个喷管型面设计中存在的问题,根据气动理论提出了一种喷管设计新方法;介绍了DF/HF激光器喷管流动数值模拟的控制方程、初边值条件和CS方法。参12(赵桂云)展开更多
Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of...Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.展开更多
In order to overcome the defects of air-agitated seed precipitation, such as scaring, liquid short-(circuiting,) the three-dimension flow fields with different structure are numerically simulated by computational flui...In order to overcome the defects of air-agitated seed precipitation, such as scaring, liquid short-(circuiting,) the three-dimension flow fields with different structure are numerically simulated by computational fluid dynamics software. Euler/Euler approach was used to study the effects of structure on the flow field in the tank. Multi-fluid model, body-fitted coordinates and multi-block gird were adopted in the simulation. The simulating results are well consonant with the practical situations. The flow field is improved obviously when the flow velocity increases from (0.089m/s) to 0.1920.300m/s at the bottom of the optimized tank and therefore the scaring is reduced greatly in the industrial production. With a gathering sill, the problem of short-circuiting, which always appeares in the upper of the tank, can be solved very well.展开更多
Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfe...Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.展开更多
The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disint...The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disintegration were ignored based on the dimensionless analysis,and the bubble size was assumed to be obedient to Rosin-Rammler distribution with a mean size of 0.6 mm.The results show that on reference operating condition,during the heating and agitation process,melt mixes well in the furnace,and the melt velocity increases with the increase of gas flux.Holding the melt for 30 min causes the max temperature in the bulk melt to increase to 60 K.After holding the heat,the agitation processing restarts,and it takes 10 min for the stratified melt to retrieve the homogeneous temperature field when the gas flux is 10 L/min,which shows deficient alloying and degassing in the melt.With the increase of gas flux from 10 to 20,30 and 40 L/min,the necessary recovery time decreases from 10 to 6,5 and 4 min gradually,which shows the improvement of the stirring efficiency.Depending on the processing purposes,for both good degassing performance and gas saving,proper operating strategy and parameters (gas flux,primarily) could be adjusted.展开更多
A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω t...A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.展开更多
文摘TN248.5 2001042439DF/HF化学激光器喷管设计和数值模拟=Nozzle designand numerical simulation method of nozzle flow in DF/HF chemical lasers[刊,中]/袁圣付,华卫红,姜宗福,赵伊君(国防科技大学应用物理系.湖南,长沙(410073))//中国激光.-2001,28(1).-19-21简述了喷管作用和单个喷管型面设计中存在的问题,根据气动理论提出了一种喷管设计新方法;介绍了DF/HF激光器喷管流动数值模拟的控制方程、初边值条件和CS方法。参12(赵桂云)
基金Project(51375498)supported by the National Natural Science Foundation of China
文摘Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.
基金Project(030620) supported by the Dissertation Innovation Fund of Central South University
文摘In order to overcome the defects of air-agitated seed precipitation, such as scaring, liquid short-(circuiting,) the three-dimension flow fields with different structure are numerically simulated by computational fluid dynamics software. Euler/Euler approach was used to study the effects of structure on the flow field in the tank. Multi-fluid model, body-fitted coordinates and multi-block gird were adopted in the simulation. The simulating results are well consonant with the practical situations. The flow field is improved obviously when the flow velocity increases from (0.089m/s) to 0.1920.300m/s at the bottom of the optimized tank and therefore the scaring is reduced greatly in the industrial production. With a gathering sill, the problem of short-circuiting, which always appeares in the upper of the tank, can be solved very well.
基金Project(50976022) supported by the National Natural Science Foundation of ChinaProject(BY2011155) supported by the Provincial Science and Technology Innovation and Transformation of Achievements of Special Fund Project of Jiangsu Province,China
文摘Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.
基金Project(2008AA11A116) supported by the National High Technology Research and Development Program of China
文摘The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disintegration were ignored based on the dimensionless analysis,and the bubble size was assumed to be obedient to Rosin-Rammler distribution with a mean size of 0.6 mm.The results show that on reference operating condition,during the heating and agitation process,melt mixes well in the furnace,and the melt velocity increases with the increase of gas flux.Holding the melt for 30 min causes the max temperature in the bulk melt to increase to 60 K.After holding the heat,the agitation processing restarts,and it takes 10 min for the stratified melt to retrieve the homogeneous temperature field when the gas flux is 10 L/min,which shows deficient alloying and degassing in the melt.With the increase of gas flux from 10 to 20,30 and 40 L/min,the necessary recovery time decreases from 10 to 6,5 and 4 min gradually,which shows the improvement of the stirring efficiency.Depending on the processing purposes,for both good degassing performance and gas saving,proper operating strategy and parameters (gas flux,primarily) could be adjusted.
基金Projects(51239005,51009072) supported by the National Natural Science Foundation of ChinaProject(2011BAF14B04) supported by the National Science&Technology Pillar Program of ChinaProject(13JDG084) supported by the Research Foundation for Advanced Talents of Jiansu University,China
文摘A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.