Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and therm...Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.展开更多
Through integrating the state of the art scientific knowledge in different research fields, some potential mechanisms of large-scale movements of underground pore-fluids such as H2O and CO2 in the continental lithosph...Through integrating the state of the art scientific knowledge in different research fields, some potential mechanisms of large-scale movements of underground pore-fluids such as H2O and CO2 in the continental lithosphere were presented and discussed. The results show that the generation and propagation of porosity waves are important mechanisms to transport mass and heat fluxes from the continental lithospheric mantle into the lower continental crust; the generation and propagation of porosity waves, pore-fluid flow focusing through lower and middle crustal faults, advection of pore-fluids through the lower and middle crust, and whole-crust convection in some particular cases are important mechanisms to transport mass and heat fluxes from the lower into the upper continental crust; heat and mass transport through convective pore-fluid flow is the most effective mechanism of ore body formation and mineralization in hydrothermal systems; due to heat and mass exchange at the interface between the earth surface, hydrosphere and atmosphere, it is very important to consider the hydro-geological effect of the deep earth pore-fluids such as H2O and CO2 on the global warming and climate change in future investigations.展开更多
The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-di...The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-dimensional equations are simplified under the assumption of long wavelength approximation. The simplified equations are solved for the stream function, temperature, and axial pressure gradient by using a regular perturbation method. The expression for pressure rise is computed numerically. The profiles of velocity, pressure gradient, temperature, heat transfer coefficient and stream function are sketched and interpreted for various embedded parameters and also the behavior of stream function for various wave forms is discussed through graphs. It is observed that the peristaltic velocity increases from porous medium to non-porous medium, the magnetic effects have increasing effect on the temperature, and the size of the trapped bolus decreases with the increasing of magnetic effects while the trend is reversed with the increasing of Darcy number. Moreover, limiting solutions of our problem are in close agreement with the corresponding results of the Newtonian fluid model.展开更多
The primary objective of present investigation is to introduce the novel aspects of convective mass condition and thermal radiation in the peristaltic transport of fluid. Magnetohydrodynamic(MHD) fluid was considered ...The primary objective of present investigation is to introduce the novel aspects of convective mass condition and thermal radiation in the peristaltic transport of fluid. Magnetohydrodynamic(MHD) fluid was considered in a symmetric channel. Heat and mass transfer characteristics were analyzed in the presence of Soret and Dufour effects, and the results were presented via two forms of thermal radiation. The temperature, concentration and pressure rise per wavelength were examined. It is observed that the velocity slip and magnetic field parameters have opposite effects on the pressure rise per wavelength. Temperature of fluid is a decreasing function of the radiation parameter. Further, the temperature of fluid decreases by increasing the heat transfer Biot number. It is notified that the heat transfer rate at the wall is a decreasing function of radiation parameter.展开更多
The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective bound...The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.展开更多
文摘Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.
基金Project(10672190) supported by the National Natural Science Foundation of China
文摘Through integrating the state of the art scientific knowledge in different research fields, some potential mechanisms of large-scale movements of underground pore-fluids such as H2O and CO2 in the continental lithosphere were presented and discussed. The results show that the generation and propagation of porosity waves are important mechanisms to transport mass and heat fluxes from the continental lithospheric mantle into the lower continental crust; the generation and propagation of porosity waves, pore-fluid flow focusing through lower and middle crustal faults, advection of pore-fluids through the lower and middle crust, and whole-crust convection in some particular cases are important mechanisms to transport mass and heat fluxes from the lower into the upper continental crust; heat and mass transport through convective pore-fluid flow is the most effective mechanism of ore body formation and mineralization in hydrothermal systems; due to heat and mass exchange at the interface between the earth surface, hydrosphere and atmosphere, it is very important to consider the hydro-geological effect of the deep earth pore-fluids such as H2O and CO2 on the global warming and climate change in future investigations.
文摘The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-dimensional equations are simplified under the assumption of long wavelength approximation. The simplified equations are solved for the stream function, temperature, and axial pressure gradient by using a regular perturbation method. The expression for pressure rise is computed numerically. The profiles of velocity, pressure gradient, temperature, heat transfer coefficient and stream function are sketched and interpreted for various embedded parameters and also the behavior of stream function for various wave forms is discussed through graphs. It is observed that the peristaltic velocity increases from porous medium to non-porous medium, the magnetic effects have increasing effect on the temperature, and the size of the trapped bolus decreases with the increasing of magnetic effects while the trend is reversed with the increasing of Darcy number. Moreover, limiting solutions of our problem are in close agreement with the corresponding results of the Newtonian fluid model.
文摘The primary objective of present investigation is to introduce the novel aspects of convective mass condition and thermal radiation in the peristaltic transport of fluid. Magnetohydrodynamic(MHD) fluid was considered in a symmetric channel. Heat and mass transfer characteristics were analyzed in the presence of Soret and Dufour effects, and the results were presented via two forms of thermal radiation. The temperature, concentration and pressure rise per wavelength were examined. It is observed that the velocity slip and magnetic field parameters have opposite effects on the pressure rise per wavelength. Temperature of fluid is a decreasing function of the radiation parameter. Further, the temperature of fluid decreases by increasing the heat transfer Biot number. It is notified that the heat transfer rate at the wall is a decreasing function of radiation parameter.
基金the Higher Education Commission of Pakistan (HEC) for the financial support through Indigenous program
文摘The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.