A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation ...A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation of rotary valve orifice reveals that orifice exists the two-throttle phenomenon.According to the finding,the revised flow area model was established.Vibration waveforms analysis was carried out by means of mathematic model and the related experiments were validated.Furthermore,as a new analysis indicator,saturation percentage was introduced first.The experimental results indicate that the revised flow area model is more accurate compared to the original one,and vibration waveforms can be optimized through suitable spool parameters and the revised cylinder structure.展开更多
Conventional model tests and centrifuge tests are frequently used to investigate seepage erosion. However, the centrifugal test method may not be efficient according to the results of hydraulic conductivity tests and ...Conventional model tests and centrifuge tests are frequently used to investigate seepage erosion. However, the centrifugal test method may not be efficient according to the results of hydraulic conductivity tests and piping erosion tests. The reason why seepage deformation in model tests may deviate from similarity was first discussed in this work. Then, the similarity criterion for seepage deformation in porous media was improved based on the extended Darcy-Brinkman-Forchheimer equation. Finally, the coupled particle flow code–computational fluid dynamics(PFC-CFD) model at the mesoscopic level was proposed to verify the derived similarity criterion. The proposed model maximizes its potential to simulate seepage erosion via the discrete element method and satisfy the similarity criterion by adjusting particle size. The numerical simulations achieved identical results with the prototype, thus indicating that the PFC-CFD model that satisfies the improved similarity criterion can accurately reproduce the processes of seepage erosion at the mesoscopic level.展开更多
基金Project(51275499)supported by the National Natural Science Foundation of ChinaProject(2013CB035404)supported by the National Basic Research Program("973" Program)of ChinaProject(51221004)supported by the Science Fund for Creative Research Groups,National Natural Science Foundation of China
文摘A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation of rotary valve orifice reveals that orifice exists the two-throttle phenomenon.According to the finding,the revised flow area model was established.Vibration waveforms analysis was carried out by means of mathematic model and the related experiments were validated.Furthermore,as a new analysis indicator,saturation percentage was introduced first.The experimental results indicate that the revised flow area model is more accurate compared to the original one,and vibration waveforms can be optimized through suitable spool parameters and the revised cylinder structure.
基金Project(51309086)supported by the National Natural Science Foundation of ChinaProject(20110094120002)supported by the Ministry Education Foundation of ChinaProjects(2014B04914,2011B07214)supported by the Fundamental Research Funds for the Central Universities,China
文摘Conventional model tests and centrifuge tests are frequently used to investigate seepage erosion. However, the centrifugal test method may not be efficient according to the results of hydraulic conductivity tests and piping erosion tests. The reason why seepage deformation in model tests may deviate from similarity was first discussed in this work. Then, the similarity criterion for seepage deformation in porous media was improved based on the extended Darcy-Brinkman-Forchheimer equation. Finally, the coupled particle flow code–computational fluid dynamics(PFC-CFD) model at the mesoscopic level was proposed to verify the derived similarity criterion. The proposed model maximizes its potential to simulate seepage erosion via the discrete element method and satisfy the similarity criterion by adjusting particle size. The numerical simulations achieved identical results with the prototype, thus indicating that the PFC-CFD model that satisfies the improved similarity criterion can accurately reproduce the processes of seepage erosion at the mesoscopic level.