5G无线通信网络中,大规模机器类通信(massive machine type communication,mMTC)是一个新兴的研究课题.对于mMTC,已经提出非正交多址接入(non-orthogonal multiple access,NOMA)来支持其大规模接入.由于mMTC实时接入的稀疏性,基于压缩...5G无线通信网络中,大规模机器类通信(massive machine type communication,mMTC)是一个新兴的研究课题.对于mMTC,已经提出非正交多址接入(non-orthogonal multiple access,NOMA)来支持其大规模接入.由于mMTC实时接入的稀疏性,基于压缩感知的算法可用于识别活跃用户并恢复稀疏信道状态信息(channel state information,CSI)向量.于是提出一种基于期望传播(expectation propagation,EP)的贝叶斯消息传递算法,用于NOMA中的联合活跃用户检测(active user detection,AUD)和信道估计(channel estimation,CE).该算法使用高斯分布对复杂的目标分布函数近似表达,实现线性计算复杂度,通过引入阻尼因子可以确保算法的收敛性.分析与仿真结果表明,基于EP的消息传递算法在联合活跃用户检测和信道估计中比现有算法具有更高的检测准确率和更低的漏检率及均方误差.展开更多
将约束最小输出能量(CMOE)准则应用于空时编码多输入多输出多载波码分多址(STBC MIMO MC-CDMA)系统,提出一种基于简化CMOE的联合信道估计与信号检测的递归自适应算法,解决了可变对角因子的自适应取值问题,所给出的最优步长半盲自适应信...将约束最小输出能量(CMOE)准则应用于空时编码多输入多输出多载波码分多址(STBC MIMO MC-CDMA)系统,提出一种基于简化CMOE的联合信道估计与信号检测的递归自适应算法,解决了可变对角因子的自适应取值问题,所给出的最优步长半盲自适应信道估计可以提高信道估计的准确性和收敛速度.比较了不同环境下信道估计的误差和各种算法的误码率性能.展开更多
文摘5G无线通信网络中,大规模机器类通信(massive machine type communication,mMTC)是一个新兴的研究课题.对于mMTC,已经提出非正交多址接入(non-orthogonal multiple access,NOMA)来支持其大规模接入.由于mMTC实时接入的稀疏性,基于压缩感知的算法可用于识别活跃用户并恢复稀疏信道状态信息(channel state information,CSI)向量.于是提出一种基于期望传播(expectation propagation,EP)的贝叶斯消息传递算法,用于NOMA中的联合活跃用户检测(active user detection,AUD)和信道估计(channel estimation,CE).该算法使用高斯分布对复杂的目标分布函数近似表达,实现线性计算复杂度,通过引入阻尼因子可以确保算法的收敛性.分析与仿真结果表明,基于EP的消息传递算法在联合活跃用户检测和信道估计中比现有算法具有更高的检测准确率和更低的漏检率及均方误差.
文摘将约束最小输出能量(CMOE)准则应用于空时编码多输入多输出多载波码分多址(STBC MIMO MC-CDMA)系统,提出一种基于简化CMOE的联合信道估计与信号检测的递归自适应算法,解决了可变对角因子的自适应取值问题,所给出的最优步长半盲自适应信道估计可以提高信道估计的准确性和收敛速度.比较了不同环境下信道估计的误差和各种算法的误码率性能.