5G无线通信网络中,大规模机器类通信(massive machine type communication,mMTC)是一个新兴的研究课题.对于mMTC,已经提出非正交多址接入(non-orthogonal multiple access,NOMA)来支持其大规模接入.由于mMTC实时接入的稀疏性,基于压缩...5G无线通信网络中,大规模机器类通信(massive machine type communication,mMTC)是一个新兴的研究课题.对于mMTC,已经提出非正交多址接入(non-orthogonal multiple access,NOMA)来支持其大规模接入.由于mMTC实时接入的稀疏性,基于压缩感知的算法可用于识别活跃用户并恢复稀疏信道状态信息(channel state information,CSI)向量.于是提出一种基于期望传播(expectation propagation,EP)的贝叶斯消息传递算法,用于NOMA中的联合活跃用户检测(active user detection,AUD)和信道估计(channel estimation,CE).该算法使用高斯分布对复杂的目标分布函数近似表达,实现线性计算复杂度,通过引入阻尼因子可以确保算法的收敛性.分析与仿真结果表明,基于EP的消息传递算法在联合活跃用户检测和信道估计中比现有算法具有更高的检测准确率和更低的漏检率及均方误差.展开更多
大规模机器类通信(massive Machine Type Communications,mMTC)旨在实现海量的物联网设备通信,被广泛应用于工业自动化、智能交通、智慧城市、智慧医疗等领域。面对数量巨大的用户设备,基于授权的随机接入技术存在接入失败概率高和信令...大规模机器类通信(massive Machine Type Communications,mMTC)旨在实现海量的物联网设备通信,被广泛应用于工业自动化、智能交通、智慧城市、智慧医疗等领域。面对数量巨大的用户设备,基于授权的随机接入技术存在接入失败概率高和信令开销大的弊端。为了解决这些弊端,学术界和工业界提出了免授权随机接入(Grant-Free Random Access,GFRA)技术,此技术能够使活跃用户设备在发送导频序列后直接传输数据而无需等待基站授权。因此,在基于免授权接入的mMTC中,基站的一个关键任务是进行用户设备活跃性检测。而在实际场景中,用户设备往往在连续时隙上呈现活跃状态,即存在时间相关性。特别地,利用时间相关性的先验信息可以降低用户设备活跃性的错误检测概率。本文从该出发点提出一种基于最大后验(Maximum A Posteriori,MAP)概率的坐标下降算法。具体而言,该算法首先从最大后验概率的角度构建目标函数,并通过Markov链模拟连续时隙中的状态转移。其次,使用坐标下降法处理接收信号的协方差得到活跃用户设备集合。最后,对当前时隙的用户设备最可能发生的情况进行决策。仿真结果表明,相比经典的活跃用户检测算法,本文算法拥有更低的错误检测概率。并且,当导频序列长度较短及活跃用户数量增加时,仍能表现出较好的检测性能。此外,随着接收天线增多,本文算法相比经典算法的性能增益更显著。展开更多
在面向卫星物联网的免授权随机接入(Grant-free Random Access,GFRA)系统中,受大规模连接和设备随机激活的影响,前导碰撞成为用户接入性能提升的主要制约因素。鉴于此,借助正交与非正交序列在前导检测和冲突抑制方面的各自优势,提出一...在面向卫星物联网的免授权随机接入(Grant-free Random Access,GFRA)系统中,受大规模连接和设备随机激活的影响,前导碰撞成为用户接入性能提升的主要制约因素。鉴于此,借助正交与非正交序列在前导检测和冲突抑制方面的各自优势,提出一种基于混合ZC(Zadoff-Chu)序列的大容量前导设计和检测方法。该方法利用正交ZC序列与其循环移位映射的不同根ZC序列级联来构建前导序列,并采用一种基于假设检验的两阶段干扰消除活跃用户检测算法,以确保大规模接入场景下的高精度用户识别。此外,对所提前导结构进行扩展,将相位旋转因子与多段非正交序列相结合,在不增加峰均比的前提下进一步扩大前导集容量。所提方法较现有复合和正交前导方法具有显著改善的多用户识别性能,在相同活跃用户下,成功检测概率最大提升约30.3%。展开更多
文摘5G无线通信网络中,大规模机器类通信(massive machine type communication,mMTC)是一个新兴的研究课题.对于mMTC,已经提出非正交多址接入(non-orthogonal multiple access,NOMA)来支持其大规模接入.由于mMTC实时接入的稀疏性,基于压缩感知的算法可用于识别活跃用户并恢复稀疏信道状态信息(channel state information,CSI)向量.于是提出一种基于期望传播(expectation propagation,EP)的贝叶斯消息传递算法,用于NOMA中的联合活跃用户检测(active user detection,AUD)和信道估计(channel estimation,CE).该算法使用高斯分布对复杂的目标分布函数近似表达,实现线性计算复杂度,通过引入阻尼因子可以确保算法的收敛性.分析与仿真结果表明,基于EP的消息传递算法在联合活跃用户检测和信道估计中比现有算法具有更高的检测准确率和更低的漏检率及均方误差.
文摘大规模机器类通信(massive Machine Type Communications,mMTC)旨在实现海量的物联网设备通信,被广泛应用于工业自动化、智能交通、智慧城市、智慧医疗等领域。面对数量巨大的用户设备,基于授权的随机接入技术存在接入失败概率高和信令开销大的弊端。为了解决这些弊端,学术界和工业界提出了免授权随机接入(Grant-Free Random Access,GFRA)技术,此技术能够使活跃用户设备在发送导频序列后直接传输数据而无需等待基站授权。因此,在基于免授权接入的mMTC中,基站的一个关键任务是进行用户设备活跃性检测。而在实际场景中,用户设备往往在连续时隙上呈现活跃状态,即存在时间相关性。特别地,利用时间相关性的先验信息可以降低用户设备活跃性的错误检测概率。本文从该出发点提出一种基于最大后验(Maximum A Posteriori,MAP)概率的坐标下降算法。具体而言,该算法首先从最大后验概率的角度构建目标函数,并通过Markov链模拟连续时隙中的状态转移。其次,使用坐标下降法处理接收信号的协方差得到活跃用户设备集合。最后,对当前时隙的用户设备最可能发生的情况进行决策。仿真结果表明,相比经典的活跃用户检测算法,本文算法拥有更低的错误检测概率。并且,当导频序列长度较短及活跃用户数量增加时,仍能表现出较好的检测性能。此外,随着接收天线增多,本文算法相比经典算法的性能增益更显著。
文摘在面向卫星物联网的免授权随机接入(Grant-free Random Access,GFRA)系统中,受大规模连接和设备随机激活的影响,前导碰撞成为用户接入性能提升的主要制约因素。鉴于此,借助正交与非正交序列在前导检测和冲突抑制方面的各自优势,提出一种基于混合ZC(Zadoff-Chu)序列的大容量前导设计和检测方法。该方法利用正交ZC序列与其循环移位映射的不同根ZC序列级联来构建前导序列,并采用一种基于假设检验的两阶段干扰消除活跃用户检测算法,以确保大规模接入场景下的高精度用户识别。此外,对所提前导结构进行扩展,将相位旋转因子与多段非正交序列相结合,在不增加峰均比的前提下进一步扩大前导集容量。所提方法较现有复合和正交前导方法具有显著改善的多用户识别性能,在相同活跃用户下,成功检测概率最大提升约30.3%。