The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c...The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.展开更多
The wettability,surfactivity and the correlation between wettability and surfactivity of sodium diethylhexylphosphate,sodium diethylhexyl polyoxyethylene phosphate and their complex in NaOH solutions were studied.A co...The wettability,surfactivity and the correlation between wettability and surfactivity of sodium diethylhexylphosphate,sodium diethylhexyl polyoxyethylene phosphate and their complex in NaOH solutions were studied.A complex alkali resistant phosphate surfactant with good permeability was prepared.The wettability of surfactants was investigated by measuring the immersion time,sinking time and capillary effects of nature cotton grey fabric in NaOH solutions.The surfactivity of the surfactants was characterized by measuring the surface tension.The effect of the complex on the surface appearance of cotton grey fabric was also investigated with a scanning electron microscope(SEM) .The results show that all the surfactants exhibit good wettability for cotton grey fabric in 0.5-5.0 mol/L of NaOH solutions,the complex system exhibits better wettability in 5.0-7.0 mol/L of NaOH solutions,in comparison with either corresponding single surfactant component employed,and wettability is well correlative with the surfactivities of the surfactant.SEM images indicate that the cotton grey fabric is well wetted by the alkaline surfactant solution and the quality of fabric is improved.展开更多
The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfac...The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfactants were adopted such as anionic surfactant(sodium dodecyl benzene sulfonate, SDBS), nonionic surfactants(tween-20 and tween-60) and cationic surfactant(hexadecyl trimethyl ammonium chloride, HTAC), respectively. The indigenous sulfur-oxidizing bacteria in bio-acidification phase were enriched and cultured from fresh activated sludge obtained from a wastewater treatment plant. It is shown that different surfactants exhibited distinct effect on the removal efficiency of heavy metals from sewage sludge. The nonionic surfactants,especially tween-60, promotes the solubilization of heavy metals, while the anionic and cationic surfactants hinder the removal of heavy metals. Copper is efficiently leached. The removal efficiency of cadium is relatively lower than that of Cu due to the demand for rigorous p H value. Lead is leached with a low efficiency as the formation of low soluble Pb SO4 precipitates.展开更多
基金supported by Shanxi Province Science Foundation for Youths(202203021212300)Taiyuan University of Science and Technology Scientific Research Initial Funding(20212064)Outstanding Doctoral Award Fund in Shanxi Province(20222060).
文摘The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.
文摘适用p H范围窄是限制亚铁/过一硫酸盐(Fe(Ⅱ)/PMS)体系进一步推广应用的关键因素之一,亟需开发拓宽Fe(Ⅱ)/PMS体系适用p H范围的策略。该文旨在探究含氮络合剂1,10-邻菲罗啉(phen)和2,2'-联吡啶(bipy)对Fe(Ⅱ)/PMS体系降解有机污染物效能和机制的影响。结果表明,引入phen和bipy可显著促进Fe(Ⅱ)/PMS体系对富含供电子基团的有机污染物苯酚和双氯芬酸的降解。当phen/Fe(Ⅱ)和bipy/Fe(Ⅱ)的摩尔比分别为3.0和4.5时,phen/Fe(Ⅱ)/PMS和bipy/Fe(Ⅱ)/PMS体系对苯酚的去除效果最佳。phen/Fe(Ⅱ)/PMS和bipy/Fe(Ⅱ)/PMS体系在p H 3.0~9.0条件下均能有效降解苯酚。化学探针、电子顺磁共振和淬灭剂实验结果表明,phen/Fe(Ⅱ)/PMS和bipy/Fe(Ⅱ)/PMS体系产生的活性氧化剂包括^(1)O_(2)和Fe(Ⅳ),且^(1)O_(2)对这2个体系中苯酚的降解起主要作用。
基金Project(20573079) supported by the National Natural Science Foundation of China
文摘The wettability,surfactivity and the correlation between wettability and surfactivity of sodium diethylhexylphosphate,sodium diethylhexyl polyoxyethylene phosphate and their complex in NaOH solutions were studied.A complex alkali resistant phosphate surfactant with good permeability was prepared.The wettability of surfactants was investigated by measuring the immersion time,sinking time and capillary effects of nature cotton grey fabric in NaOH solutions.The surfactivity of the surfactants was characterized by measuring the surface tension.The effect of the complex on the surface appearance of cotton grey fabric was also investigated with a scanning electron microscope(SEM) .The results show that all the surfactants exhibit good wettability for cotton grey fabric in 0.5-5.0 mol/L of NaOH solutions,the complex system exhibits better wettability in 5.0-7.0 mol/L of NaOH solutions,in comparison with either corresponding single surfactant component employed,and wettability is well correlative with the surfactivities of the surfactant.SEM images indicate that the cotton grey fabric is well wetted by the alkaline surfactant solution and the quality of fabric is improved.
基金Project(21276069)supported by the National Natural Science Foundation of ChinaProject(CX2012B139)supported by the Hunan Province Innovation Foundation for Postgraduate,China
文摘The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfactants were adopted such as anionic surfactant(sodium dodecyl benzene sulfonate, SDBS), nonionic surfactants(tween-20 and tween-60) and cationic surfactant(hexadecyl trimethyl ammonium chloride, HTAC), respectively. The indigenous sulfur-oxidizing bacteria in bio-acidification phase were enriched and cultured from fresh activated sludge obtained from a wastewater treatment plant. It is shown that different surfactants exhibited distinct effect on the removal efficiency of heavy metals from sewage sludge. The nonionic surfactants,especially tween-60, promotes the solubilization of heavy metals, while the anionic and cationic surfactants hinder the removal of heavy metals. Copper is efficiently leached. The removal efficiency of cadium is relatively lower than that of Cu due to the demand for rigorous p H value. Lead is leached with a low efficiency as the formation of low soluble Pb SO4 precipitates.