Coal-based Magnetic Activated Carbons (CMAC's) were prepared from three representative coal samples of various ranks: Baorigele lignite from Inner Mongolia; Datong bitumite from Shanxi province; and Taixi anthraci...Coal-based Magnetic Activated Carbons (CMAC's) were prepared from three representative coal samples of various ranks: Baorigele lignite from Inner Mongolia; Datong bitumite from Shanxi province; and Taixi anthracite from Ningxia Hui Auto- nomous Region. Fe3O4 was used as a magnetic additive. A nitrogen-adsorption analyzer was used to determine the specific surface area and pore structure of the resulting activated carbons. The adsorption capacity was assessed by the adsorption of iodine and methylene blue. X-ray diffraction was used to measure the evolution behavior of Fe304 during the preparation process. Magnetic properties were characterized with a vibrating-sample magnetometer. The effect of the activation temperature on the performance of CMAC's was also studied. The results show that, compared to Baorigele lignite and Taixi anthracite, the Datong bitumite is more appropriate for the preparation of CMAC's with a high specific surface area, an advanced pore structure and suitable magnetic properties. Fe304 can effectively enhance the magnetic properties and control the pore structure by increasing the ratio of meso- pores. An addition of 6.0% Fe304 and an activation temperature of 880 ℃ produced a CMAC having a specific surface area, an iodine adsorption, a methylene blue adsorption and a specific saturation magnetization of 1152.0 m2/g, 1216.7 mg/g, 229.5 mg/g and 4.623 emu/g, respectively. The coal used to prepare this specimen was Datong bitumite.展开更多
To study the mechanism of SO2 and Hg removal from flue gas, an experimental packed bed reactor was designed to simulate the dry FGD, where a mixture of lime and fly ash in ratio 1:3 w/w was used as the S02 and Hg sor...To study the mechanism of SO2 and Hg removal from flue gas, an experimental packed bed reactor was designed to simulate the dry FGD, where a mixture of lime and fly ash in ratio 1:3 w/w was used as the S02 and Hg sorbent, and steam at temperature of 100 ℃ was applied for activation of the sorbent, while the activation time set to 20 rain. The experimental factors including the SO2/Hg sorbent characteristics, 50% breakthrough time for SO2/Hg removal, sorbent packed bed depth and reaction temperature were investigated. The experimental results show that after steam activation, the BET specific surface area and specific pore volume increased from 37.8 to 45.5 m^2/g and from 0.42 to 0.51 cm^3/g, respectively. With activation of the sorbent by steam, the 50% breakthrough times of SO2 and Hg removal increased from 34 to 42 rain and from 23 to 45 rain, respectively. When the packed bed depth was increased from 5 to 25 ram. the 50% breakthrough times for Hg and S02 removal increased from 12 to 52 rain and from 6 to 47 rain, respectively. With the increase of the reaction temperature, the 50% breakthrough of SO2/Hg removal decreased accordingly. Steam activation can efficiently improve SO2/Hg removal simultaneously.展开更多
Correlations among free radicals, apparent activation energy, and functional groups during lowtemperature oxidation of Jurassic coal in Northern Shaanxi were investigated by examining three coal samples collected from...Correlations among free radicals, apparent activation energy, and functional groups during lowtemperature oxidation of Jurassic coal in Northern Shaanxi were investigated by examining three coal samples collected from the Ningtiaota, Jianxin, and Shigetai coal mines. Free radical concentrations at less than 120 ℃ were investigated by electron spin resonance experiments while the thermogravimetric experiments were conducted to analyze apparent activation energies. In addition, Fourier transform infrared spectroscopy was employed to study the spectrum of functional groups generated in coal. The results indicated that, in decreasing order, the apparent activation energies were Shigetai 〉Jianxin 〉 Ningtiaota, indicating that, from 50 to 120 ℃, the Ningtiaota coal sample most easily absorbed and reacted with oxygen while the most resistant was the Shigetai coal sample. Free radical concentrations and line heights increased with increased temperature, and the line width and Lande factor showed irregular fluctuations. Functional group variations were different among these coals, and the phenol and alcohol-associated OHs, carboxyls, and aromatic ring double bonds might have had a major impact on free radical concentrations. These results were meaningful for better consideration and management of coal oxidation at low temperatures.展开更多
The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypoc...The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypochlorite and sodium hydroxide concentrations all have a significant effect on the removal of molybdenum.The optimum process operating parameters were found to be:time,4 h;sodium hydroxide concentration,10%;sodium hypochlorite concentration,8%;liquid to solid ratio,10:1;temperature,50℃;and, agitation speed,500 r/min.Under these conditions the extraction of molybdenum is greater than 99,9%and the extraction of copper is less than 0.01%.A shrinking particle model could be used to describe the leaching process.The apparent activation energy of the dissolution reaction was found to be approximately 8.8 kJ/mol.展开更多
The influence of the carrier pseudo-boehmite (PB), which was impregnated with a Ni-Mo-P solution under over- saturation conditions and treated at different temperatures, on its property for adsorption of active meta...The influence of the carrier pseudo-boehmite (PB), which was impregnated with a Ni-Mo-P solution under over- saturation conditions and treated at different temperatures, on its property for adsorption of active metals (Ni, Mo) was studied. The results showed that the amount for adsorption of active metal was decreased with an increasing treatment tem- perature of the carrier. After phase transition of the carrier PB to γ-Al2O3, its capacity for adsorption of active metals was significantly reduced. The difference in properties for adsorption of active metals (Ni, Mo) by PB dried at 120℃ and γ-Al2O3 calcined at 600℃ was studied in detail. The results suggested that the ability of the PB carrier to adsorb metals was higher than that of theγ-Al2O3 carrier. Especially, the ratio of chemically adsorbed metals on the PB support was much higher than 3'-alumina. The chemical adsorption sites on the PB carrier were proved to be much more than those on the γ-Al2O3 carrier. Ni and Mo chemical adsorption sites differed a lot on the carrier possibly because of the difference in chemical adsorption sites.展开更多
基金supported by the National Natural Science Foundation of China (No20776150)the National High Technology Research and Development Program of China (No2008AA05Z308)
文摘Coal-based Magnetic Activated Carbons (CMAC's) were prepared from three representative coal samples of various ranks: Baorigele lignite from Inner Mongolia; Datong bitumite from Shanxi province; and Taixi anthracite from Ningxia Hui Auto- nomous Region. Fe3O4 was used as a magnetic additive. A nitrogen-adsorption analyzer was used to determine the specific surface area and pore structure of the resulting activated carbons. The adsorption capacity was assessed by the adsorption of iodine and methylene blue. X-ray diffraction was used to measure the evolution behavior of Fe304 during the preparation process. Magnetic properties were characterized with a vibrating-sample magnetometer. The effect of the activation temperature on the performance of CMAC's was also studied. The results show that, compared to Baorigele lignite and Taixi anthracite, the Datong bitumite is more appropriate for the preparation of CMAC's with a high specific surface area, an advanced pore structure and suitable magnetic properties. Fe304 can effectively enhance the magnetic properties and control the pore structure by increasing the ratio of meso- pores. An addition of 6.0% Fe304 and an activation temperature of 880 ℃ produced a CMAC having a specific surface area, an iodine adsorption, a methylene blue adsorption and a specific saturation magnetization of 1152.0 m2/g, 1216.7 mg/g, 229.5 mg/g and 4.623 emu/g, respectively. The coal used to prepare this specimen was Datong bitumite.
基金supported by the National High-Tech R&D Program of China (No. 2008AA06Z318)the Ministry of Environmental Protection of China (Nos. 201009048 and 200909025)
文摘To study the mechanism of SO2 and Hg removal from flue gas, an experimental packed bed reactor was designed to simulate the dry FGD, where a mixture of lime and fly ash in ratio 1:3 w/w was used as the S02 and Hg sorbent, and steam at temperature of 100 ℃ was applied for activation of the sorbent, while the activation time set to 20 rain. The experimental factors including the SO2/Hg sorbent characteristics, 50% breakthrough time for SO2/Hg removal, sorbent packed bed depth and reaction temperature were investigated. The experimental results show that after steam activation, the BET specific surface area and specific pore volume increased from 37.8 to 45.5 m^2/g and from 0.42 to 0.51 cm^3/g, respectively. With activation of the sorbent by steam, the 50% breakthrough times of SO2 and Hg removal increased from 34 to 42 rain and from 23 to 45 rain, respectively. When the packed bed depth was increased from 5 to 25 ram. the 50% breakthrough times for Hg and S02 removal increased from 12 to 52 rain and from 6 to 47 rain, respectively. With the increase of the reaction temperature, the 50% breakthrough of SO2/Hg removal decreased accordingly. Steam activation can efficiently improve SO2/Hg removal simultaneously.
基金supported by the Key Projects of the National Natural Science Foundation of China (Nos. 51504187, 51774233, and 51704226)Shaanxi Province Industrial Science and Technology Research Project (No. 2016GY-192)the China Postdoctoral Science Foundation (No. 2016-M-590963)
文摘Correlations among free radicals, apparent activation energy, and functional groups during lowtemperature oxidation of Jurassic coal in Northern Shaanxi were investigated by examining three coal samples collected from the Ningtiaota, Jianxin, and Shigetai coal mines. Free radical concentrations at less than 120 ℃ were investigated by electron spin resonance experiments while the thermogravimetric experiments were conducted to analyze apparent activation energies. In addition, Fourier transform infrared spectroscopy was employed to study the spectrum of functional groups generated in coal. The results indicated that, in decreasing order, the apparent activation energies were Shigetai 〉Jianxin 〉 Ningtiaota, indicating that, from 50 to 120 ℃, the Ningtiaota coal sample most easily absorbed and reacted with oxygen while the most resistant was the Shigetai coal sample. Free radical concentrations and line heights increased with increased temperature, and the line width and Lande factor showed irregular fluctuations. Functional group variations were different among these coals, and the phenol and alcohol-associated OHs, carboxyls, and aromatic ring double bonds might have had a major impact on free radical concentrations. These results were meaningful for better consideration and management of coal oxidation at low temperatures.
基金the 11th Five-Year Plan of the National Scientific and Technological Program of China(No. 2007BAB22B01)the National Natural Science Foundation of China(No.50704036).
文摘The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypochlorite and sodium hydroxide concentrations all have a significant effect on the removal of molybdenum.The optimum process operating parameters were found to be:time,4 h;sodium hydroxide concentration,10%;sodium hypochlorite concentration,8%;liquid to solid ratio,10:1;temperature,50℃;and, agitation speed,500 r/min.Under these conditions the extraction of molybdenum is greater than 99,9%and the extraction of copper is less than 0.01%.A shrinking particle model could be used to describe the leaching process.The apparent activation energy of the dissolution reaction was found to be approximately 8.8 kJ/mol.
文摘The influence of the carrier pseudo-boehmite (PB), which was impregnated with a Ni-Mo-P solution under over- saturation conditions and treated at different temperatures, on its property for adsorption of active metals (Ni, Mo) was studied. The results showed that the amount for adsorption of active metal was decreased with an increasing treatment tem- perature of the carrier. After phase transition of the carrier PB to γ-Al2O3, its capacity for adsorption of active metals was significantly reduced. The difference in properties for adsorption of active metals (Ni, Mo) by PB dried at 120℃ and γ-Al2O3 calcined at 600℃ was studied in detail. The results suggested that the ability of the PB carrier to adsorb metals was higher than that of theγ-Al2O3 carrier. Especially, the ratio of chemically adsorbed metals on the PB support was much higher than 3'-alumina. The chemical adsorption sites on the PB carrier were proved to be much more than those on the γ-Al2O3 carrier. Ni and Mo chemical adsorption sites differed a lot on the carrier possibly because of the difference in chemical adsorption sites.