对W波段带状注五间隙耦合腔的高频结构进行了设计与分析,以一个五间隙耦合腔作为输入腔,一个五间隙耦合腔作为输出腔,构成了W波段SBEIK的注波互作用系统,利用CST粒子工作室对整个注波互作用系统进行了三维计算模拟,并用Magic 3D对注波...对W波段带状注五间隙耦合腔的高频结构进行了设计与分析,以一个五间隙耦合腔作为输入腔,一个五间隙耦合腔作为输出腔,构成了W波段SBEIK的注波互作用系统,利用CST粒子工作室对整个注波互作用系统进行了三维计算模拟,并用Magic 3D对注波互作用计算进行了验证,结果表明两种PIC软件的计算结果基本一致.该SBEIK在电子注电压为75 k V、电流为4 A条件下,仅用两个腔体在W波段实现了高于24 d B的增益,为下一步高增益、高效率、小型化、紧凑型SBEIK的设计奠定了坚实的基础.展开更多
提出了一种工作于220 GHz的双电子注高次模折叠波导慢波结构,该结构由四段慢波线组成,各段之间通过衰减器进行连接。文章首先计算了该结构的色散特性,其次利用CST模拟软件对其注波互作用特性进行了仿真分析:该结构工作模输出信号稳定,...提出了一种工作于220 GHz的双电子注高次模折叠波导慢波结构,该结构由四段慢波线组成,各段之间通过衰减器进行连接。文章首先计算了该结构的色散特性,其次利用CST模拟软件对其注波互作用特性进行了仿真分析:该结构工作模输出信号稳定,增益为33.1 d B。最后讨论了在电子注直流发射模型中,能量离散、角度离散、电子注电压差异三个仿真参量改变时,输出信号增益随参量的变化关系。通过对参量变化的分析,希望为器件的制造提供参考。展开更多
文摘对W波段带状注五间隙耦合腔的高频结构进行了设计与分析,以一个五间隙耦合腔作为输入腔,一个五间隙耦合腔作为输出腔,构成了W波段SBEIK的注波互作用系统,利用CST粒子工作室对整个注波互作用系统进行了三维计算模拟,并用Magic 3D对注波互作用计算进行了验证,结果表明两种PIC软件的计算结果基本一致.该SBEIK在电子注电压为75 k V、电流为4 A条件下,仅用两个腔体在W波段实现了高于24 d B的增益,为下一步高增益、高效率、小型化、紧凑型SBEIK的设计奠定了坚实的基础.
文摘提出了一种工作于220 GHz的双电子注高次模折叠波导慢波结构,该结构由四段慢波线组成,各段之间通过衰减器进行连接。文章首先计算了该结构的色散特性,其次利用CST模拟软件对其注波互作用特性进行了仿真分析:该结构工作模输出信号稳定,增益为33.1 d B。最后讨论了在电子注直流发射模型中,能量离散、角度离散、电子注电压差异三个仿真参量改变时,输出信号增益随参量的变化关系。通过对参量变化的分析,希望为器件的制造提供参考。