期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
基于变分自编码器和注意力Seq2Seq模型的风电功率预测
1
作者 李辰龙 李逗 +2 位作者 车畅畅 潘苗 高进 《南方电网技术》 CSCD 北大核心 2024年第12期107-116,共10页
针对风电场功率影响因素多、有效数据量小、预测时序长的复杂特点,提出了基于变分自编码器和注意力Seq2Seq模型的风电功率预测方法。采集测风塔数据和对应的连续功率值构造样本集,利用变分自编码器模型将样本进行数据增强,从而获得足够... 针对风电场功率影响因素多、有效数据量小、预测时序长的复杂特点,提出了基于变分自编码器和注意力Seq2Seq模型的风电功率预测方法。采集测风塔数据和对应的连续功率值构造样本集,利用变分自编码器模型将样本进行数据增强,从而获得足够多的样本用于支撑预测模型训练;构建从测风塔多个监测指标到连续功率值的回归分析模型,充分挖掘不同指标与功率值的映射关系;将扩充后的不同指标分别输入到注意力Seq2Seq模型中进行指标时序预测,并将数值天气预报数据用于修正预测结果,从而得到更准确的指标加权预测结果;将实时获取的测风塔和数值天气预报数据输入到训练好的加权预测模型和回归分析模型中,实现风电功率的多步预测。利用风电场站实际运行数据集进行了模型验证,结果表明:与传统时序预测方法相比,基于变分自编码器和注意力Seq2Seq模型能够在较小的重构误差下得到更准确的风电功率预测结果。 展开更多
关键词 变分自编码器 注意力机制 注意力seq2seq模型 风电功率预测
在线阅读 下载PDF
融合Seq2Seq与时序注意力机制的工艺质量预测
2
作者 阴艳超 施成娟 +1 位作者 邹朝普 刘孝保 《机械科学与技术》 北大核心 2025年第3期453-464,共12页
针对流程工业生产过程整体工序繁多,工序间耦合严重,多维工艺数据间时序关系及其复杂等问题,提出一种融合Seq2Seq与时序注意力机制的高维多尺度工艺过程质量预测方法。在分析多工序工艺数据特点,以及运用Seq2Seq模型进行编码解码过程面... 针对流程工业生产过程整体工序繁多,工序间耦合严重,多维工艺数据间时序关系及其复杂等问题,提出一种融合Seq2Seq与时序注意力机制的高维多尺度工艺过程质量预测方法。在分析多工序工艺数据特点,以及运用Seq2Seq模型进行编码解码过程面临的难题的基础上,引入时序注意力机制来构造长距离变化的时域信息矩阵。设计卷积神经网络和BiLSTM作为编码组件,学习工艺过程时序数据的工艺参数关联性和双向时序关系等潜在深度特征,并结合时序注意力机制抽取关键信息,实现对工艺质量相关的工艺参数时序数据的非线性相关特征和时序依赖性的自适应地学习。最后,通过对制丝生产工艺过程质量的单输出和多输出预测实验,验证了所提算法的实用性和有效性,为多工序耦合的流程制造过程质量的精准预测提供了方法和实现途径。 展开更多
关键词 多工序时序耦合 工艺质量预测 seq2seq 时序注意力机制 自适应学习
在线阅读 下载PDF
融合定长Seq2Seq网络的中文成语智能纠错模型
3
作者 何春辉 葛斌 +1 位作者 张翀 徐浩 《计算机科学》 北大核心 2025年第5期227-234,共8页
四字成语作为一类特殊词语,在中文使用中非常流行。随着中文纠错任务的发展,中文成语的智能纠错已经成为自然语言处理领域的一个研究热点。针对现有方法在中文成语智能纠错任务上准确率偏低的问题,提出了一种融合定长Seq2Seq网络的中文... 四字成语作为一类特殊词语,在中文使用中非常流行。随着中文纠错任务的发展,中文成语的智能纠错已经成为自然语言处理领域的一个研究热点。针对现有方法在中文成语智能纠错任务上准确率偏低的问题,提出了一种融合定长Seq2Seq网络的中文成语智能纠错模型。它在底层通过融合Seq2Seq网络架构和注意力机制,并结合混合数据集构造方法,共同训练得到输入和输出端序列长度固定的Seq2Seq模型,用来完成中文四字成语智能纠错任务。在大型公开中文成语纠错数据集上的实验结果表明,定长Seq2Seq模型优于现有方法,能够实现同一个模型同时兼容乱序、缺字和错字3种不同的中文成语智能纠错目标。它的综合纠错准确率可以达到91.3%,比最优基线模型高出11.73%。 展开更多
关键词 成语纠错 定长seq2seq 双向GRU 注意力机制
在线阅读 下载PDF
基于改进Seq2Seq的船舶轨迹预测模型
4
作者 唐家乐 段兴锋 姚鹏 《上海海事大学学报》 北大核心 2025年第2期18-22,共5页
针对传统循环神经网络(recurrent neural network,RNN)模型收敛速度慢、精度低,导致海上船舶预测轨迹与真实轨迹之间差别较大的问题,构建由RNN组成的Seq2Seq(sequence to sequence)模型。引入注意力机制和卷积神经网络(convolutional ne... 针对传统循环神经网络(recurrent neural network,RNN)模型收敛速度慢、精度低,导致海上船舶预测轨迹与真实轨迹之间差别较大的问题,构建由RNN组成的Seq2Seq(sequence to sequence)模型。引入注意力机制和卷积神经网络(convolutional neural network,CNN)对模型进行改进,加强对数据特征的提取能力,加快模型收敛速度并提高轨迹预测精度。实验结果显示:与传统RNN模型相比,Seq2Seq模型的均方误差、均方根误差和平均绝对误差分别降低81.41%、12.67%和62.43%;与Seq2Seq模型相比,改进Seq2Seq模型的均方误差、均方根误差和平均绝对误差分别降低42.87%、69.27%和45.79%。 展开更多
关键词 船舶轨迹预测 seq2seq(sequence to sequence) 注意力机制 卷积神经网络(CNN) 循环神经网络(RNN)
在线阅读 下载PDF
基于时空注意力-Seq2Seq网络的ISAR包络对齐方法 被引量:1
5
作者 李文哲 李开明 +3 位作者 岳屹峰 王金昊 许慧革 罗迎 《信号处理》 CSCD 北大核心 2024年第9期1659-1673,共15页
包络对齐是逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像中平动补偿处理的第一步,包络对齐的精度对于方位聚焦和成像质量具有重要影响。针对稀疏孔径和低信噪比条件下传统的包络对齐算法性能显著降低的问题,本文提出一... 包络对齐是逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像中平动补偿处理的第一步,包络对齐的精度对于方位聚焦和成像质量具有重要影响。针对稀疏孔径和低信噪比条件下传统的包络对齐算法性能显著降低的问题,本文提出一种基于时空注意力-Seq2Seq网络的包络对齐方法。该网络模型以门控循环单元为编码解码单元,针对点目标距离像包络的能量分布特征对空间注意力机制进行改进后,添加时间和空间两维注意力机制形成对ISAR距离像回波包络进行对齐的能力。数据生成方面,基于电磁波仿真参数和目标运动仿真参数进行成像模拟仿真构造了ISAR回波数据集,经过8倍插值后输入网络进行训练,使网络学习到从未对齐回波到对齐回波的映射关系。所提方法以离线训练代替在线相关计算,融合了Seq2Seq模型在处理序列到序列问题上的结构优势、时间注意力机制在捕捉长期依赖关系和空间注意力机制在提取区域特征上的突出能力,实现了稀疏孔径和低信噪比条件下对距离-慢时间域ISAR回波的自动对齐。通过向训练好的时空注意力-Seq2Seq网络输入未对齐的回波序列,网络可以在不改变回波相位结构的前提下自动实现包络对齐。仿真和实测数据对齐结果表明,和传统的包络对齐方法相比,所提方法在稀疏孔径和低信噪比条件下优势明显,在欠采样率为50%、信噪比为0 dB条件下对雅克-42飞机实测回波数据的包络对齐实验中,该方法将循环移位误差由39、26减小至6,将成像结果的图像熵由4.58、4.22减小至1.71,验证了其良好性能。 展开更多
关键词 逆合成孔径雷达成像 包络对齐 时空注意力机制 seq2seq模型
在线阅读 下载PDF
基于时空注意力-Seq2Seq模型的多风电机组多步风速预测算法 被引量:5
6
作者 刘长良 赵陆阳 +1 位作者 王梓齐 徐健 《太阳能学报》 EI CAS CSCD 北大核心 2023年第8期420-429,共10页
针对在多风电机组风速预测任务中,卷积运算不适用于提取排布不规则的多风电机组空间相关性的问题,提出一种基于时空注意力-Seq2Seq模型的多风电机组多步风速预测算法。首先使用空间注意力机制强化风速序列的空间相关性,并对常规空间注... 针对在多风电机组风速预测任务中,卷积运算不适用于提取排布不规则的多风电机组空间相关性的问题,提出一种基于时空注意力-Seq2Seq模型的多风电机组多步风速预测算法。首先使用空间注意力机制强化风速序列的空间相关性,并对常规空间注意力机制进行改进;之后使用Seq2Seq模型中的编码器进行编码;最后使用结合时间注意力机制的解码器计算多风电机组的多步预测结果。以河北市某风电场的实际数据为算例进行实验,结果表明相比其他对比算法,所提算法的平均绝对误差下降约4.3%~15.0%,精度有较大提高。 展开更多
关键词 风速 深度学习 风电机组 注意力机制 seq2seq 时空相关性
在线阅读 下载PDF
基于注意力机制的Tree2Seq代码注释自动生成 被引量:3
7
作者 赵乐乐 张丽萍 赵凤荣 《计算机工程与科学》 CSCD 北大核心 2023年第4期638-645,共8页
代码注释可以帮助开发人员快速理解代码,降低代码维护成本。为了保留代码的结构信息,针对经典的Seq2Seq模型将代码的结构信息压缩为序列,导致结构信息丢失的问题,提出使用Tree-LSTM编码器直接将代码转化成抽象语法树进行编码,使注释生... 代码注释可以帮助开发人员快速理解代码,降低代码维护成本。为了保留代码的结构信息,针对经典的Seq2Seq模型将代码的结构信息压缩为序列,导致结构信息丢失的问题,提出使用Tree-LSTM编码器直接将代码转化成抽象语法树进行编码,使注释生成模型能有效获取代码的结构信息,提升注释生成效果。采用基于注意力机制的Tree2Seq模型实现代码注释生成任务,避免了编码器端将所有输入信息压缩为固定向量,导致部分信息丢失的情况。通过在Java和Python 2种编程语言的数据集上进行实验,使用3种机器翻译常用的自动评测指标进行评估验证,并选取一部分测试数据进行了人工评估。实验结果表明,基于注意力机制的Tree2Seq模型能为解码器提供更全面且丰富的语义结构信息,为后续实验分析和改进提供指导。 展开更多
关键词 代码注释 自动生成 注意力机制 Tree2seq
在线阅读 下载PDF
基于Seq2Seq模型的SparQL查询预测 被引量:5
8
作者 杨东华 邹开发 +1 位作者 王宏志 王金宝 《软件学报》 EI CSCD 北大核心 2021年第3期805-817,共13页
近年来,随着以数据为中心的应用大量增加,图数据模型逐渐被人们所关注,图数据库的发展也非常迅速,对于用户而言,往往更关心其在使用数据库过程中的效率问题.主要研究如何利用已有的信息进行图数据库的查询预测,从而进行数据的预加载与缓... 近年来,随着以数据为中心的应用大量增加,图数据模型逐渐被人们所关注,图数据库的发展也非常迅速,对于用户而言,往往更关心其在使用数据库过程中的效率问题.主要研究如何利用已有的信息进行图数据库的查询预测,从而进行数据的预加载与缓存,提高系统的响应效率.为了使得方法具有跨数据移植性,并深入挖掘数据间的联系,将SparQL查询提取为序列的形式,使用Seq2Seq模型对其进行数据分析和预测,并使用真实的数据集对方法进行测试,实验结果表明,本方案具有良好的效果. 展开更多
关键词 图数据库 SPARQL 查询预测 seq2seq模型
在线阅读 下载PDF
基于深度特征和Seq2Seq模型的网络态势预测方法 被引量:15
9
作者 林志兴 王立可 《计算机应用》 CSCD 北大核心 2020年第8期2241-2247,共7页
针对目前大多数的网络态势预测方法不能挖掘数据中的深度信息且需要手动提取与构造特征的问题,提出了深度特征网络态势预测方法DFS-Seq2Seq。首先将网络流、日志和系统事件等产生的数据进行清洗处理,使用深度特征融合算法自动合成深度... 针对目前大多数的网络态势预测方法不能挖掘数据中的深度信息且需要手动提取与构造特征的问题,提出了深度特征网络态势预测方法DFS-Seq2Seq。首先将网络流、日志和系统事件等产生的数据进行清洗处理,使用深度特征融合算法自动合成深度关系特征,然后采用自动编码器对合成的特征进行提取,最后使用长短期记忆网络(LSTM)构建Seq2Seq模型对数据进行预测。通过设计缜密的实验在公开数据集Kent2016上对所提方法进行验证,结果显示在深度为2时与支持向量机(SVM)、贝叶斯、随机森林(RF)和LSTM这四种分类模型相比,其召回率分别提升了7.4%、11.5%、6.5%、3.0%。实验结果表明DFS-Seq2Seq可以在实际应用中有效地识别网络身份验证中的危险事件,对网络态势作出有效的预测。 展开更多
关键词 网络态势 深度特征合成 自动编码器 seq2seq模型 双向长短期记忆网络
在线阅读 下载PDF
基于seq2seq和SVM双层融合的非侵入式用户异常行为检测 被引量:1
10
作者 江友华 叶梦豆 +1 位作者 赵乐 杨兴武 《计算机应用与软件》 北大核心 2024年第9期97-105,共9页
以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对... 以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对分解后多种家用电器用电数据进行异常检测。在UKDALE数据集实验结果表明,该模型不仅能提高分解准确度、降低分解误差,而且多个电器数据结合分析实现了用户异常行为检测。 展开更多
关键词 非侵入式负荷分解 Kmeans聚类 seq2seq模型 SVM算法 异常行为检测
在线阅读 下载PDF
基于改进seq2seq模型的英汉翻译研究 被引量:23
11
作者 肖新凤 李石君 +2 位作者 余伟 刘杰 刘倍雄 《计算机工程与科学》 CSCD 北大核心 2019年第7期1257-1265,共9页
目前机器翻译主要对印欧语系进行优化与评测,很少有对中文进行优化的,而且机器翻译领域效果最好的基于注意力机制的神经机器翻译模型—seq2seq模型也没有考虑到不同语言间语法的变换。提出一种优化的英汉翻译模型,使用不同的文本预处理... 目前机器翻译主要对印欧语系进行优化与评测,很少有对中文进行优化的,而且机器翻译领域效果最好的基于注意力机制的神经机器翻译模型—seq2seq模型也没有考虑到不同语言间语法的变换。提出一种优化的英汉翻译模型,使用不同的文本预处理和嵌入层参数初始化方法,并改进seq2seq模型结构,在编码器和解码器之间添加一层用于语法变化的转换层。通过预处理,能缩减翻译模型的参数规模和训练时间20%,且翻译性能提高0.4BLEU。使用转换层的seq2seq模型在翻译性能上提升0.7~1.0BLEU。实验表明,在规模大小不同的语料英汉翻译任务中,该模型与现有的基于注意力机制的seq2seq主流模型相比,训练时长一致,性能提高了1~2BLEU。 展开更多
关键词 深度学习 神经机器翻译 seq2seq模型 注意力机制 命名实体识别
在线阅读 下载PDF
基于Seq2Seq模型的自定义古诗生成 被引量:2
12
作者 王乐为 余鹰 张应龙 《计算机科学与探索》 CSCD 北大核心 2020年第6期1028-1035,共8页
当前,古诗句生成任务大多基于单一的循环神经网络(RNN)结构,在生成时需事先给定一个起始字,然后以该起始字为基础进行古诗句生成,生成过程的可控性较差,往往达不到预期效果。针对以上问题,将注意力机制引入Seq2Seq模型,通过自建的数据... 当前,古诗句生成任务大多基于单一的循环神经网络(RNN)结构,在生成时需事先给定一个起始字,然后以该起始字为基础进行古诗句生成,生成过程的可控性较差,往往达不到预期效果。针对以上问题,将注意力机制引入Seq2Seq模型,通过自建的数据集进行训练,实现了基于关键字的自定义古诗句生成。在生成阶段,首先输入一段描述性内容,并从中提取出关键字。当关键字不足时,使用word2vec进行有效的关键字补全操作。此外,针对古诗体裁难以控制问题,在Seq2Seq模型中的Encoder端增加格式控制符,有效解决了以往模型在生成古诗时,体裁选择的随机性问题。实验表明,所提出的模型较好地达到了预期的生成效果。 展开更多
关键词 seq2seq模型 循环神经网络(RNN) 古诗生成 注意力机制
在线阅读 下载PDF
基于Seq2Seq深度学习模型的焦炉煤气发生量预测方法研究 被引量:2
13
作者 王文婷 刘姝君 +2 位作者 张耀聪 杜小泽 许潼 《兰州理工大学学报》 CAS 北大核心 2023年第5期50-58,共9页
为实现钢铁生产过程中副产煤气的精准预测,构建了基于序列到序列的深度学习模型.通过编码器计算输入序列的隐状态得到隐状态矩阵,并通过解码器对其进行解码得到预测结果.根据灰色关联度分析关联度较高的输入参数,针对钢铁生产中煤气产... 为实现钢铁生产过程中副产煤气的精准预测,构建了基于序列到序列的深度学习模型.通过编码器计算输入序列的隐状态得到隐状态矩阵,并通过解码器对其进行解码得到预测结果.根据灰色关联度分析关联度较高的输入参数,针对钢铁生产中煤气产量不稳定波动的特点,利用箱线图和hampel滤波对原始数据的极端异常点和突变点进行处理,对输入模型分别进行单步和多步预测.结果表明:单步预测时基于Seq2Seq结构的模型较单一模型预测性能有所提高,其中LSTM2GRU模型对峰谷值拟合表现最优;多步预测时LSTM2GRU模型可有效降低模型性能下降趋势,通过在2个数据集与LSTM2LSTM模型和GRU2GRU模型对比发现,LSTM2GRU模型均方根误差分别下降了5.3%、5.6%和9%、7.7%,平均绝对误差分别下降了7.3%、7%和9.7%、7.8%.因此,LSTM2GRU模型相比其他模型更适合长尺度时间序列的预测,在模型中引入GRU结构提高了预测精度,缩短了预测耗时. 展开更多
关键词 煤气预测 神经网络 深度学习 seq2seq模型 灰色关联度
在线阅读 下载PDF
基于Seq2Seq模型的工作流动态调度多目标进化算法
14
作者 严佳豪 张明珠 +3 位作者 杨中国 高晶 王桂玲 赵卓峰 《郑州大学学报(理学版)》 CAS 北大核心 2023年第1期35-41,共7页
将数据处理类工作流在云计算环境下的调度问题建模为动态多目标优化问题,同时为了解决静态多目标优化算法在环境参数动态变化下可能出现的种群多样性缺失问题,在NSGA-II算法的基础上结合Seq2Seq深度学习模型,提出了DNSGA-II-Seq2Seq算法... 将数据处理类工作流在云计算环境下的调度问题建模为动态多目标优化问题,同时为了解决静态多目标优化算法在环境参数动态变化下可能出现的种群多样性缺失问题,在NSGA-II算法的基础上结合Seq2Seq深度学习模型,提出了DNSGA-II-Seq2Seq算法,算法通过Seq2Seq模型学习连续历史环境下局部最优解的变化规律,在环境变化时预测新的解并将其加入NSGA-II算法的种群中,以解决多样性缺失问题,同时加速算法收敛。在改进的WorkflowSim上进行的实验表明,与其他经典的算法相比,DNSGA-II-Seq2Seq算法预测的解和最终结果在多项指标上均优于其他算法,验证了算法的有效性。 展开更多
关键词 工作流调度 seq2seq模型 动态多目标优化算法 DNSGA-II-seq2seq算法
在线阅读 下载PDF
基于Seq2seq模型的推荐应用研究 被引量:3
15
作者 陈俊航 徐小平 杨恒泓 《计算机科学》 CSCD 北大核心 2019年第B06期493-496,共4页
日常生活的信息纷繁复杂,因此需要推荐系统来帮助人们进行信息筛选。传统的推荐系统将推荐过程看成是静态的,缺少对序列数据短期或长期的依赖关系的研究。循环神经网络由于在处理序列化数据时有突出的表现,因此可应用到具有序列特征的... 日常生活的信息纷繁复杂,因此需要推荐系统来帮助人们进行信息筛选。传统的推荐系统将推荐过程看成是静态的,缺少对序列数据短期或长期的依赖关系的研究。循环神经网络由于在处理序列化数据时有突出的表现,因此可应用到具有序列特征的推荐数据中。文中采用循环神经网络的seq2seq模型来构造这种推荐系统,将推荐过程看作一个序列的翻译过程或答案生成的过程,利用大量用户以往的交互数据,找出其中的频繁模式,将其应用到其他用户对物品的行为预测中。实验在两个常用数据集上进行,使用BLEU衡量推荐结果,实验结果表明:该方法可以做出序列化的推荐。该方法只需要用户和物品的互动数据,摆脱了评分矩阵,避免了数据稀疏性的问题。 展开更多
关键词 推荐系统 循环神经网络 seq2seq模型
在线阅读 下载PDF
引入小波分解的Seq2Seq水质多步预测模型研究 被引量:1
16
作者 白雯睿 杨毅强 李强 《现代电子技术》 2022年第17期100-105,共6页
针对现有水质预测模型对水质多步预测大多采用向量输出的预测模式,忽略了时序预测的输出之间存在的时序联系,导致水质多步预测性能较差的问题,采用小波分解(WD)分解水质数据来提取隐藏的水质特征,然后基于分解所得的序列,建立以长短时记... 针对现有水质预测模型对水质多步预测大多采用向量输出的预测模式,忽略了时序预测的输出之间存在的时序联系,导致水质多步预测性能较差的问题,采用小波分解(WD)分解水质数据来提取隐藏的水质特征,然后基于分解所得的序列,建立以长短时记忆(LSTM)网络作为编码器和解码器的序列到序列(Seq2Seq)的预测模型,以期望解决时序预测的输出序列之间存在的依赖性问题。采用珠江流域老口站的溶解氧数据验证模型进行7日预测的效果,实验结果表明,LSTM模型处理该问题的能力要强于传统的MLP及SVR模型,而在LSTM模型的基础上构成的WD-Seq2Seq模型的预测效果进一步提升,溶解氧的7日预测平均MAE仅有0.1471,7日预测平均MSE仅有0.0412,7日预测平均RMSE仅有0.1973,水质类别的7日预测平均准确率达到93.26%。 展开更多
关键词 小波分解 LSTM模型 seq2seq模型 多步预测 时间序列 水质预测 水质指标 溶解氧
在线阅读 下载PDF
基于BI-GRU改进的Seq2Seq网络的变压器油中溶解气体浓度预测方法 被引量:13
17
作者 汤健 侯慧娟 +3 位作者 陈洪岗 王劭菁 盛戈皞 江秀臣 《电力自动化设备》 EI CSCD 北大核心 2022年第3期196-202,217,共8页
基于门控循环单元(GRU)构建双向多层门控循环单元,并引入编码器-解码器结构搭建Seq2Seq网络模型,通过优化神经元及神经网络结构提取时序数据依赖关系。同时引入注意力机制和Scheduled Sampling算法,自动获取与当前时刻预测输出显著相关... 基于门控循环单元(GRU)构建双向多层门控循环单元,并引入编码器-解码器结构搭建Seq2Seq网络模型,通过优化神经元及神经网络结构提取时序数据依赖关系。同时引入注意力机制和Scheduled Sampling算法,自动获取与当前时刻预测输出显著相关的关键输入时间点,提高长时间预测的精度。变压器正常运行状态下的气体浓度预测算例结果表明,与基于简单GRU模型及简单Seq2Seq模型的方法相比,所提方法的预测误差更低且预测的发展趋势更符合真实值;变压器异常运行状态下的气体浓度预测算例结果表明,所提方法的平均相对误差和最大相对误差相比长短期记忆(LSTM)网络方法分别降低了0.73%和2.31%。 展开更多
关键词 电力变压器 油中溶解气体 门控循环单元 seq2seq 注意力机制 Scheduled Sampling算法
在线阅读 下载PDF
一种新的seq2seq的可控图像字幕的生成方法 被引量:3
18
作者 王源顺 段迅 吴云 《计算机应用研究》 CSCD 北大核心 2021年第11期3510-3516,共7页
针对当前的图像字幕方法只能够用一种黑盒的、从外部难以控制的架构描述图像的问题。创造性地将图像字幕问题转换为seq2seq问题,达到了可控生成图像字幕的效果。设计一个由图像区域构成的实体集合或实体序列作为控制信号,在实体块切换... 针对当前的图像字幕方法只能够用一种黑盒的、从外部难以控制的架构描述图像的问题。创造性地将图像字幕问题转换为seq2seq问题,达到了可控生成图像字幕的效果。设计一个由图像区域构成的实体集合或实体序列作为控制信号,在实体块切换的块哨兵和带视觉哨兵的自适应注意力机制的指导下,将控制信号有规律地输入到双层的长短期记忆网络(long short term memory,LSTM)中,以可控的方式指导模型生成对应的图像字幕;此外,baseline使用cross entropy loss来早停模型的训练,引入强化学习思想来解决训练时的优化目标与评估算法效果时指标不一致的问题,进一步优化模型效果。实验表明:在MSCOCO及Flickr30k数据集上,提出的算法在生成可控图像字幕、字幕质量、多样性上达到了非常好的效果。 展开更多
关键词 图像字幕 seq2seq 控制信号 哨兵机制 自适应注意力机制
在线阅读 下载PDF
基于Seq2Seq技术的电力系统暂态稳定评估方法 被引量:8
19
作者 章昊 田宏强 +2 位作者 王磊 许斌 段治丰 《电网与清洁能源》 北大核心 2021年第4期23-31,共9页
电力系统暂态稳定的评估识别有助于电网运营商制定系统扰动和故障后的纠正控制措施。引入深度学习思想,提出了一种基于Seq2Seq技术的电力系统暂态稳定评估方法。首先,梳理电力系统暂态稳定评估指标;然后以GRU为神经元,引入注意力机制,... 电力系统暂态稳定的评估识别有助于电网运营商制定系统扰动和故障后的纠正控制措施。引入深度学习思想,提出了一种基于Seq2Seq技术的电力系统暂态稳定评估方法。首先,梳理电力系统暂态稳定评估指标;然后以GRU为神经元,引入注意力机制,建立暂态稳定评估模型。算例验证表明:所提方法能够深入学习到样本数据中的时序性依赖特征,有效抓取特征细节,从而显著提升评估准确率。 展开更多
关键词 电力系统暂态稳定 seq2seq技术 GRU 注意力机制 时序性依赖特征
在线阅读 下载PDF
考虑多对一时空特征的短期风功率组合预测模型 被引量:1
20
作者 魏乐 戴泽 +2 位作者 陈远野 房方 胡阳 《动力工程学报》 CAS CSCD 北大核心 2024年第12期1869-1877,共9页
为研究单台风机数据进行风功率预测时未考虑空间特征造成预测精度不理想的问题,提出了一种考虑多对一时空特征的基于改进序列到序列(Seq2Seq)模型的短期风功率预测组合模型。首先,采用k近邻算法对风电场的风机实现空间区域的划分,获取k... 为研究单台风机数据进行风功率预测时未考虑空间特征造成预测精度不理想的问题,提出了一种考虑多对一时空特征的基于改进序列到序列(Seq2Seq)模型的短期风功率预测组合模型。首先,采用k近邻算法对风电场的风机实现空间区域的划分,获取k台近邻风机的数据,基于孤立森林算法对异常数据进行识别、筛选和填充。其次,应用双向门控循环单元和自注意力机制对Seq2Seq模型进行改进,利用具有空间特征的邻接矩阵对模型进行权重优化。最后,进行多对一短期风功率预测,输出目标风机风功率预测结果。采用美国风场实际运行数据,将所提出的组合模型与长短期记忆(LSTM)等5种模型进行对比,以验证模型的可靠性。结果表明:该组合模型在时空风功率预测中表现出令人满意的稳定性和鲁棒性,可有效提高风功率预测精度及效率。 展开更多
关键词 时空特征 短期风功率预测 多对一 注意力机制 seq2seq
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部