期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于通道和帧级特征注意力模型的环境声音识别 被引量:8
1
作者 苏瑞轩 葛动元 姚锡凡 《科学技术与工程》 北大核心 2024年第16期6792-6798,共7页
为了对环境声音进行更好的识别,提出基于通道和帧级特征注意力的环境声音识别卷积神经网络模型。该模型针对声音特征特点选取一维卷积以提高模型对声音特征信息的提取能力,并引入SE-Res2Net模块实现对声音特征细粒度上的全局感受并帮助... 为了对环境声音进行更好的识别,提出基于通道和帧级特征注意力的环境声音识别卷积神经网络模型。该模型针对声音特征特点选取一维卷积以提高模型对声音特征信息的提取能力,并引入SE-Res2Net模块实现对声音特征细粒度上的全局感受并帮助模型关注特征通道间的信息,在全连接层前加入注意力统计池化模块,增强模型对表征不同声音类别的关键帧级特征的学习以提高模型识别性能。采用Urbansound8K数据集,实验结果表明:所提模型在测试集上的训练准确率达到94.5%,即模型可以有效学习声音特征中表征不同环境声音的关键信息并进行正确预测。对消融实验结果分析可得,所提模型的设计可使其分类错误率的下降率达到43.8%,表明模型对一维卷积的应用和各个模块的引入是有效的,可见所提环境声音识别模型性能优越。 展开更多
关键词 声音识别 细粒度 通道加权 帧级特征 注意力统计池化
在线阅读 下载PDF
基于ASP-SERes2Net的说话人识别算法
2
作者 令晓明 陈鸿雁 +1 位作者 张小玉 张真 《北京工业大学学报》 CAS 北大核心 2025年第1期42-50,共9页
为提升说话人识别的特征提取能力,解决在噪声环境下识别率低的问题,提出一种基于残差网络的说话人识别算法——ASP-SERes2Net。首先,采用梅尔语谱图作为神经网络的输入;其次,改进Res2Net网络的残差块,并且在每个残差块后引入压缩激活(sq... 为提升说话人识别的特征提取能力,解决在噪声环境下识别率低的问题,提出一种基于残差网络的说话人识别算法——ASP-SERes2Net。首先,采用梅尔语谱图作为神经网络的输入;其次,改进Res2Net网络的残差块,并且在每个残差块后引入压缩激活(squeeze-and-excitation,SE)注意力模块;然后,用注意力统计池化(attention statistics pooling,ASP)代替原来的平均池化;最后,采用附加角裕度的Softmax(additive angular margin Softmax,AAM-Softmax)对说话人身份进行分类。通过实验,将ASP-SERes2Net算法与时延神经网络(time delay neural network,TDNN)、ResNet34和Res2Net进行对比,ASP-SERes2Net算法的最小检测代价函数(minimum detection cost function,MinDCF)值为0.0401,等误率(equal error rate,EER)为0.52%,明显优于其他3个模型。结果表明,ASP-SERes2Net算法性能更优,适合应用于噪声环境下的说话人识别。 展开更多
关键词 说话人识别 梅尔语谱图 Res2Net 压缩激活(squeeze-and-excitation SE)注意力模块 注意力统计池化(attention statistics pooling ASP) 附加角裕度的Softmax(additive angular margin Softmax AAM-Softmax)
在线阅读 下载PDF
基于局部和全局特征提取及多级特征聚合的中文方言识别模型
3
作者 孟一凡 陈宁 李泓锴 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期898-904,共7页
与其他语种的方言相比,中文方言种类较多,且方言类间差异小,类内差异大,因此中文方言识别极具挑战性。考虑到中文方言间的差异性可能体现在语音的局部(短时)特性上,也可能体现在语音的全局(长时)特性上,同时还可能反映在语音不同层级的... 与其他语种的方言相比,中文方言种类较多,且方言类间差异小,类内差异大,因此中文方言识别极具挑战性。考虑到中文方言间的差异性可能体现在语音的局部(短时)特性上,也可能体现在语音的全局(长时)特性上,同时还可能反映在语音不同层级的特性上,本文提出一种融合语音局部和全局特征提取以及多级特征聚合的中文方言识别模型。首先通过Res2Block提取语音的局部特征,然后利用Conformer提取语音的全局特征,最后通过将多个Conformer级联输出进行多层级特征的聚合。跨域和非跨域的实验结果表明,该模型取得了比基线模型更高的识别准确率。 展开更多
关键词 CONFORMER 方言识别 多层级特征聚合 Res2Block 注意力统计池化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部