期刊文献+
共找到890篇文章
< 1 2 45 >
每页显示 20 50 100
基于注意力残差U-Net的皮肤镜图像分割方法 被引量:2
1
作者 沈鑫 魏利胜 《智能系统学报》 CSCD 北大核心 2023年第4期699-707,共9页
针对皮肤镜图像类内差异性、类间相似性、数据集不平衡等问题,本文提出了一种基于注意力残差U-Net(attention residual block-UNet,ARB-UNet)的皮肤镜图像分割方法。将卷积块注意力机制模块(convolutional block attention module,CBAM... 针对皮肤镜图像类内差异性、类间相似性、数据集不平衡等问题,本文提出了一种基于注意力残差U-Net(attention residual block-UNet,ARB-UNet)的皮肤镜图像分割方法。将卷积块注意力机制模块(convolutional block attention module,CBAM)引入到U-Net模型的“跳过连接”中;同时将CBAM模块集成到残差模块DRB(dilated residual networks)中得到注意力残差结构(attention residual block,ARB);且选取Focal Tversky Loss作为该模型的损失函数;在ISIC2016数据集上对所提ARB-UNet模型进行训练和测试,并与传统方法和UNet等经典方法进行了对比实验,实验结果中灵敏度(sensitivity,SE)达到了92.9%,特异性(specificity,SP)达到了94.1%,Dice相似指数(dice similarity cofficient,DSC)达到了92.1%,整体上均优于其他对比方法,从而验证了本文方法是有效的和可行的。 展开更多
关键词 图像分割 皮肤镜 卷积神经网络 注意力残差u-net 注意力机制 卷积块注意力机制模块 深度学习 残差网络
在线阅读 下载PDF
基于注意力的多尺度残差U-Net的海洋中尺度涡检测 被引量:2
2
作者 王丽娜 孙阳 +2 位作者 张红春 王旭东 董昌明 《海洋与湖沼》 北大核心 2025年第1期64-76,共13页
海洋中尺度涡是一类重要的海洋现象,其特征是海洋中的螺旋运动,伴随着海水温度、营养物质以及能量的输送,对海洋生态系统和全球的气候变化起着重要影响。因此,海洋涡旋的智能识别成为海洋学的研究热点之一。由于海洋中尺度涡数量众多且... 海洋中尺度涡是一类重要的海洋现象,其特征是海洋中的螺旋运动,伴随着海水温度、营养物质以及能量的输送,对海洋生态系统和全球的气候变化起着重要影响。因此,海洋涡旋的智能识别成为海洋学的研究热点之一。由于海洋中尺度涡数量众多且大小不同,存在检测精度不高问题。为了提高海洋中尺度涡的检测精度,提出一种基于注意力的多尺度残差U-Net的海洋涡旋检测模型(dual cross-attention-pyramid spilt attention-Res U-Net, DCA-PRUNet)。该模型采用基于注意力的编解码器结构。编解码结构中,引入金字塔分割注意力(pyramid spilt attention,PSA)以提取多尺度特征,并捕获不同涡旋的特征信息;此外,为了解决网络过深导致模型无法训练的问题,引入残差学习模块。同时,为了使解码器更好地恢复涡旋细节信息,引入双交叉注意力模块(dual cross-attention, DCA)捕获编码器各个阶段的特征依赖。选取西北太平洋海域的海平面异常(sea level anomaly,SLA)与海面温度(sea surface temperature,SST)数据进行建模,实验结果表明DCA-PRUNet涡旋检测的准确率达到95.12%,F1分数达到91.21%,显著优于现有的模型,验证了该模型的有效性。 展开更多
关键词 海洋涡旋 深度学习 金字塔分割注意力 残差学习 双交叉注意力
在线阅读 下载PDF
基于残差双通道注意力U-Net的古代壁画病害检测
3
作者 赵辉荣 余映 +2 位作者 陈安 倪雪莹 王信超 《计算机辅助设计与图形学学报》 北大核心 2025年第6期1040-1052,共13页
针对现有的古代壁画病害检测方法难以准确地检测壁画病害区域的问题,提出一种基于残差双通道注意力U-Net的古代壁画病害检测模型.首先设计残差双通道模块代替U-Net中的编码器和解码器,构建具有多分辨率分析能力的网络检测复杂背景中不... 针对现有的古代壁画病害检测方法难以准确地检测壁画病害区域的问题,提出一种基于残差双通道注意力U-Net的古代壁画病害检测模型.首先设计残差双通道模块代替U-Net中的编码器和解码器,构建具有多分辨率分析能力的网络检测复杂背景中不同尺度的壁画病害区域;然后加入多尺度注意力门融合高层和低层的互补特征,使网络能突出壁画病害区域的显著特征;最后设计混合域注意力模块抑制壁画背景信息的干扰,进一步准确地定位壁画病害区域;此外,采用多阶段损失相加的方式提高网络模型的性能.实验结果表明,在敦煌莫高窟壁画数据集和云南少数民族壁画数据集上,所提模型的检测结果在视觉感受方面优于其他对比方法,在F-score指标上分别达到了0.807 7和0.728 9,均高于其他对比方法. 展开更多
关键词 古代壁画病害检测 u-net 残差双通道 多尺度注意力 混合域注意力
在线阅读 下载PDF
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
4
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
针对X线图像超分辨率重建的轻量残差注意力网络
5
作者 杨昆 齐晁仪 +4 位作者 刘天军 艾尚璞 闫森广 刘秀玲 薛林雁 《河北大学学报(自然科学版)》 北大核心 2025年第4期419-430,共12页
针对当前医学图像超分辨率重建算法复杂、参数量大等问题,提出了轻量化的X线医学图像超分辨率网络LDRAN(lightweight deep residual attention network).该方法设计了轻量且高效的残差块LDRB(lightweight deep residual block),在保证... 针对当前医学图像超分辨率重建算法复杂、参数量大等问题,提出了轻量化的X线医学图像超分辨率网络LDRAN(lightweight deep residual attention network).该方法设计了轻量且高效的残差块LDRB(lightweight deep residual block),在保证参数量不增加的条件下,通过增设卷积层来提取更为丰富的图像特征.为进一步提高卷积层间的信息传递效率,设计了一种新颖的残差级联方案IRSC(improved residual skip concatenation).同时,为应对医学影像中信噪比低的问题,构建了多维混合注意力机制模块CSPMA(channel-spatial-pixel mixed attention),该模块分别从通道、空间和像素3个维度筛选信息,从而显著增强了网络对关键图像特征的捕捉能力.实验结果表明,LDRAN在X线医学图像数据集Chest X-ray上的PSNR为36.81 dB,SSIM为0.8966,均取得了最优.并且能够更好地重建X线图像的细节和纹理.此外,LDRAN在3个自然图像数据集上的重建效果比多数具有代表性的算法更好. 展开更多
关键词 超分辨重建 轻量化 深度残差 混合多维度注意力模块 残差级联
在线阅读 下载PDF
多尺度残差与全局注意力结合的低剂量CT去噪
6
作者 孙亚楠 陈平 潘晋孝 《应用光学》 北大核心 2025年第2期292-299,共8页
针对目前低剂量CT(low dose computed tomography,LDCT)图像去噪方法由于缺乏对空间特征和去噪任务之间的内在联系,导致重建图像的纹理细节丢失和过于平滑的问题,提出了一种结合多尺度密集残差和全局注意力的图像去噪网络。通过引入多... 针对目前低剂量CT(low dose computed tomography,LDCT)图像去噪方法由于缺乏对空间特征和去噪任务之间的内在联系,导致重建图像的纹理细节丢失和过于平滑的问题,提出了一种结合多尺度密集残差和全局注意力的图像去噪网络。通过引入多尺度密集残差块来提取图像的多尺度特征信息,并通过全局注意力机制(global attention mechanism,GAM)来关注模型不同通道间的跨维信息,同时加入跳跃连接进一步扩大全局交互特征的范围,最后使用多尺度特征损失函数增强图像纹理细节,避免图像过于平滑的问题。经过实验验证,本文所提出的算法在峰值信噪比(PSNR)和结构相似度(SSIM)这两项指标上分别达到了35.1838 dB、0.9605,在去除噪声的同时很好地保留了图像细节信息,优于其他算法。 展开更多
关键词 低剂量CT 图像去噪 多尺度密集残差 全局注意力机制
在线阅读 下载PDF
基于先验驱动残差注意力网络的阵元故障MIMO雷达DOA估计
7
作者 陈金立 周龙 +1 位作者 李家强 姚昌华 《电讯技术》 北大核心 2025年第5期674-683,共10页
受恶劣电磁环境和元器件老化等因素影响,多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达的天线阵元发生故障的概率增加,而阵元故障会严重降低目标波达方向(Direction of Arrival,DOA)估计性能。现有的大多数基于深度学习的DOA... 受恶劣电磁环境和元器件老化等因素影响,多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达的天线阵元发生故障的概率增加,而阵元故障会严重降低目标波达方向(Direction of Arrival,DOA)估计性能。现有的大多数基于深度学习的DOA估计方法未能充分利用阵列模型的先验信息,导致其建立的映射关系极为复杂,从而使得网络拟合难度较大。为此,提出一种基于先验驱动残差注意力网络的阵元故障MIMO雷达DOA估计方法。首先,利用MIMO雷达协方差矩阵的双重Toeplitz先验特性,构建了基于先验驱动的残差注意力网络,并引入残差注意力块对协方差矩阵的特征进行加权处理,旨在学习阵元故障下存在数据缺失的协方差矩阵和完整协方差矩阵生成向量之间的映射关系。然后,根据残差注意力网络输出的生成向量估计值得到完整的协方差矩阵。最后,利用RD-ESPRIT(Reduced Dimension ESPRIT)算法估计目标DOA。仿真结果表明,所提算法在阵元故障下的DOA估计性能优于现有算法,在信噪比为15 dB时,其DOA估计精度比效果最好的现有算法提高了43.26%。 展开更多
关键词 MIMO雷达 DOA估计 双重Toeplitz先验 残差网络 注意力机制
在线阅读 下载PDF
融合深度残差网络与注意力机制的驾驶人行为检测方法研究
8
作者 陈运星 崔军华 +2 位作者 吴钊 吴华伟 袁星宇 《重庆理工大学学报(自然科学)》 北大核心 2025年第3期34-42,共9页
为提高驾驶人行为检测的准确性及模型的可解释性,提出了一种融合深度残差网络与注意力机制的驾驶人行为检测模型。利用深度残差网络提取特征模块的优势,对比不同层数的网络模型结果,选取合适的网络模型作为基础网络;为剔除无用信息对驾... 为提高驾驶人行为检测的准确性及模型的可解释性,提出了一种融合深度残差网络与注意力机制的驾驶人行为检测模型。利用深度残差网络提取特征模块的优势,对比不同层数的网络模型结果,选取合适的网络模型作为基础网络;为剔除无用信息对驾驶行为的干扰,引入SE Block注意力机制并对图像进行特征提取和分类预测;通过与其他模型的对比试验、消融试验和特征可视化试验验证所提出模型的性能。结果表明:与其他检测模型相比,所提出模型的平均分类准确率为99.89%,其展现出更优的性能;采用Grad-CAM可视化方法解释模型的关注区域,所提出模型更精准地关注对驾驶行为判定的关键特征,进一步增强了本模型的可解释性,提高了人们对驾驶行为检测模型的信任性。 展开更多
关键词 深度学习 驾驶人行为检测 深度残差网络 注意力机制 神经网络可视化
在线阅读 下载PDF
多注意力残差脉冲神经网络的接地网故障诊断
9
作者 闫孝姮 丁一凡 +1 位作者 陈伟华 张雪 《电子测量与仪器学报》 北大核心 2025年第3期77-91,共15页
针对目前接地网故障诊断方法效果单一与非智能化的问题,提出了一种多注意力残差脉冲神经网络(MAR-SNN)的接地网故障诊断方法。首先,创建用于训练的接地网数据集,通过对电阻抗成像技术(EIT)网格大小的重新剖分,提高成像速度,并利用局部... 针对目前接地网故障诊断方法效果单一与非智能化的问题,提出了一种多注意力残差脉冲神经网络(MAR-SNN)的接地网故障诊断方法。首先,创建用于训练的接地网数据集,通过对电阻抗成像技术(EIT)网格大小的重新剖分,提高成像速度,并利用局部自适应对比度增强方法,增强不同故障等级间的图像特征;其次,利用所提出的多注意力脉冲残差块,构建MAR-SNN模型,实现对接地网故障等级的识别任务,该残差模块通过在两次脉冲神经元后进行身份映射,同时引入多注意力机制,并采用参数-泄露-积分-触发脉冲神经元与批归一化层,分别提升模型识别准确率;最后,利用EIT与训练好的MAR-SNN模型,建立对接地网故障的智能诊断模型。模型对比分析结果表明,MAR-SNN在接地网智能故障诊断中的效果优于现有先进模型,在测试集中准确率可达96.31%,其中在轻、中腐蚀程度下的准确率可达100%、97.20%;同时实验结果证明,所提方法可以完成对接地网故障检测与等级识别的综合诊断任务,实现对接地网的智能故障诊断,验证了该方法的有效性与可行性。 展开更多
关键词 接地网智能故障诊断 注意力残差 脉冲神经网络 电阻抗成像技术 对比度增强
在线阅读 下载PDF
基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法
10
作者 李海燕 乔仁超 +1 位作者 李海江 陈泉 《东北大学学报(自然科学版)》 北大核心 2025年第1期26-34,共9页
为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均... 为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均匀雾区的细节特征,设计跨维度通道空间注意力优化信息权重.然后,提出全局建模Transformer模块加深编码器的特征提取过程,设计带有并行卷积的Swin Transformer捕捉特征之间的依赖关系.最后,设计门控特征融合解码模块复用图像重建所需的纹理信息,滤除不相关的雾噪声,提高去雾性能.在4个公开数据集上进行定性和定量实验,实验结果表明:所提算法能够有效地处理非均匀雾区域,重建纹理细腻且语义丰富的高保真无雾图像,其峰值信噪比和结构相似性指数都优于经典对比算法. 展开更多
关键词 图像去雾 全局残差注意力机制 CNN-Transformer架构 门控特征融合 图像重建
在线阅读 下载PDF
基于残差注意力密集网络的协作频谱感知方法
11
作者 王安义 朱涛 龚健超 《电信科学》 北大核心 2025年第2期84-94,共11页
针对基于卷积神经网络(convolutional neural network,CNN)的协作频谱感知算法存在的网络结构简单、特征提取能力不足和感知性能下降等问题,提出了一种基于残差注意力密集网络(residual attention dense network,RADN)的协作频谱感知算... 针对基于卷积神经网络(convolutional neural network,CNN)的协作频谱感知算法存在的网络结构简单、特征提取能力不足和感知性能下降等问题,提出了一种基于残差注意力密集网络(residual attention dense network,RADN)的协作频谱感知算法。该算法通过改进基础残差块,从感受野、通道和空间3个维度引入注意力机制,结合残差连接和密集连接,构建了强大的深层特征提取结构——密集残差(residual in dense,RID),显著提升了网络的特征提取能力和频谱感知性能。实验结果表明,相较于传统深度学习方法,RADN算法在低信噪比(signal-to-noise ratio,SNR)条件下表现出显著的性能提升。该方法不仅能够适应多种调制方式,还具备较高的检测概率和良好的鲁棒性。 展开更多
关键词 协作频谱感知 卷积神经网络 注意力机制 密集连接 残差连接
在线阅读 下载PDF
结合倒残差自注意力机制的遥感图像目标检测
12
作者 赵文清 赵振寰 巩佳潇 《智能系统学报》 北大核心 2025年第1期64-72,共9页
针对遥感图像目标检测存在背景信息干扰严重、待检测目标尺寸差异大等问题,提出一种结合倒残差自注意力机制的目标检测方法。首先,使用具有强特征提取能力的倒残差自注意力机制骨干网络充分提取目标特征,降低复杂背景信息的干扰;其次,... 针对遥感图像目标检测存在背景信息干扰严重、待检测目标尺寸差异大等问题,提出一种结合倒残差自注意力机制的目标检测方法。首先,使用具有强特征提取能力的倒残差自注意力机制骨干网络充分提取目标特征,降低复杂背景信息的干扰;其次,构造多尺度空间金字塔池化模块,提供多尺度感受野,增强捕捉不同尺寸目标的能力;最后,提出轻量级特征融合模块,对骨干网络提取的特征图进行融合,充分结合低层与高层特征,提高网络对不同尺寸目标的检测能力。与传统网络及其他改进目标检测算法进行对比,实验发现该方法的检测精度明显优于其他算法。此外,在DIOR数据集和RSOD数据集上设计消融实验,结果表明,该方法在DIOR数据集与RSOD数据集上的平均精度均值比YOLOv8算法分别提升4.6和4.2百分点,明显提升遥感图像目标检测的精度。 展开更多
关键词 遥感图像 目标检测 残差 注意力机制 多尺度 空间金字塔 特征提取 特征融合
在线阅读 下载PDF
基于融入注意力机制的改进U-Net鲁棒焊缝识别算法 被引量:1
13
作者 周思羽 刘帅师 +1 位作者 杨宏韬 宋宜虎 《计算机集成制造系统》 北大核心 2025年第1期135-146,共12页
针对复杂焊接环境下大量弧光噪声造成焊缝激光条纹分割精度低的问题,提出一种融入注意力机制的改进U-Net鲁棒焊缝识别算法。首先,在模型的特征融合过程中使用超强通道注意力机制实现特征的加权融合。然后,在编码器结构之后,加入特征分... 针对复杂焊接环境下大量弧光噪声造成焊缝激光条纹分割精度低的问题,提出一种融入注意力机制的改进U-Net鲁棒焊缝识别算法。首先,在模型的特征融合过程中使用超强通道注意力机制实现特征的加权融合。然后,在编码器结构之后,加入特征分类结构,使其可以输出焊缝对应类型名称。最后,由于网络训练中正负样本失衡会对识别结果产生影响,在模型的损失函数中添加Dice Loss和Focal Loss来进行修正,以提高模型的鲁棒性和泛化性。另外,在模型训练的过程中提出了一种像素位置信息和图像种类信息融合的方式,以增强焊缝识别的鲁棒性。实验表明,在具有弧光、烟雾噪声等干扰环境下,所提方法得到了较好的实验结果,能够满足检测对精度和实时性的需求,在具有弧光、烟雾等干扰的实际焊接现场中具有一定的应用前景。 展开更多
关键词 焊缝识别 图像分割 注意力机制 u-net 鲁棒性
在线阅读 下载PDF
结合残差与双注意力机制的U-Net语音增强方法 被引量:1
14
作者 许春冬 王磊 +2 位作者 胡菁兰 闵源 徐锦武 《计算机工程与设计》 北大核心 2024年第11期3383-3389,共7页
针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注... 针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注意力机制,减少时频特征提取中的细节信息丢失;在网络中融入空洞空间金字塔池化结构,在低参数量情况下融合不同尺度上下文背景信息,提高模型特征捕获能力。实验结果表明,DA-Res-Unet网络模型在可见噪声测试集上的PESQ、STOI和LSD这3种评测指标取得了不同程度的提升,在未知噪声测试集上具备一定优势。 展开更多
关键词 语音增强 深度学习 残差网络 特征提取 编解码结构 注意力机制 空洞空间池化金字塔
在线阅读 下载PDF
基于轻量级注意力残差网络的面部表情识别方法
15
作者 郜高飞 邵党国 +1 位作者 马磊 易三莉 《吉林大学学报(理学版)》 北大核心 2025年第2期437-444,共8页
针对卷积神经网络参数量大、训练时间长的问题,提出一种基于轻量级注意力残差网络的面部表情识别方法.首先,以残差网络为骨架重新搭建模型,通过减少层数并改进残差模块提高模型性能;其次,引入深度可分离卷积减少模型的参数量和计算工作... 针对卷积神经网络参数量大、训练时间长的问题,提出一种基于轻量级注意力残差网络的面部表情识别方法.首先,以残差网络为骨架重新搭建模型,通过减少层数并改进残差模块提高模型性能;其次,引入深度可分离卷积减少模型的参数量和计算工作量;最后,采用Mish函数替代ReLU函数的挤压激励模块自适应地调整通道权重.该模型在两个公共数据集CK+和JAFFE上采用经典的十折交叉验证方式进行验证,分别获得了98.16%和96.67%的准确率.实验结果表明,该方法在模型识别精度和复杂度之间进行了较好权衡. 展开更多
关键词 面部表情识别 轻量级 残差网络 深度可分离卷积 注意力机制
在线阅读 下载PDF
基于全局注意力残差收缩网络的柱塞泵故障诊断方法
16
作者 王晓琪 吴轲 +1 位作者 赵观辉 吴军 《中国舰船研究》 北大核心 2025年第2期39-46,共8页
[目的]针对传统神经网络在强噪声干扰下特征提取能力不足的问题,提出一种新的全局注意力残差收缩网络,实现复杂环境下柱塞泵故障精准诊断。[方法]首先,对原始监测信号进行数据切分;建立一种新的带有注意力机制的全局特征提取器,从监测... [目的]针对传统神经网络在强噪声干扰下特征提取能力不足的问题,提出一种新的全局注意力残差收缩网络,实现复杂环境下柱塞泵故障精准诊断。[方法]首先,对原始监测信号进行数据切分;建立一种新的带有注意力机制的全局特征提取器,从监测信号中提取故障相关特征,同时引入阈值软化机制,减少信号中噪声干扰的影响;然后,对网络模型进行反向传播优化,减少损失误差,提升模型的诊断性能;最后,将特征提取结果输入到故障分类器进行故障识别。基于柱塞泵故障模拟实验台,验证所提出方法的有效性。[结果]结果表明:相比其他模型,该全局注意力残差收缩网络模型有更高的诊断精度,且具备更强的抗干扰能力。[结论]该诊断方法能够在复杂恶劣环境下实现故障的精准诊断。 展开更多
关键词 残差网络 注意力机制 故障分析 故障诊断 柱塞泵
在线阅读 下载PDF
一种结合孪生倒残差与自注意力增强的遥感影像变化检测方法
17
作者 张荞 曹志成 +3 位作者 沈洋 汪宙峰 王成武 许嘉欣 《自然资源遥感》 北大核心 2025年第3期85-94,共10页
遥感影像变化检测在国土调查更新、城市发展监测与规划等方面中具有重大的应用需求。针对遥感影像变化检测在实际应用中面临的挑战,文章提出了一种结合孪生倒残差结构与自注意力增强的轻量级变化检测方法。该方法通过引入孪生的改进型... 遥感影像变化检测在国土调查更新、城市发展监测与规划等方面中具有重大的应用需求。针对遥感影像变化检测在实际应用中面临的挑战,文章提出了一种结合孪生倒残差结构与自注意力增强的轻量级变化检测方法。该方法通过引入孪生的改进型倒残差结构替代传统卷积神经网络结构作为骨干网络,充分提取特征信息且大幅降低网络复杂度,使用自注意力增强模块提升网络的全局信息关注能力,在损失函数中加入边缘权重精准优化提取结果的细节,利用多层次的跳接残差连接充分融合全局与局部特征。在公开和自制的遥感影像变化检测数据集上对该方法分别进行性能测试,结果表明,所提方法相较于其他变化检测方法,在不降低检测精度的前提下大幅减少了网络参数量和计算量,实现了遥感影像变化检测模型轻量化。 展开更多
关键词 遥感影像 变化检测 改进型倒残差 注意力增强模块 轻量化模型
在线阅读 下载PDF
基于U-Net网络与注意力机制的儿童龋齿预防算法研究
18
作者 房禹池 杨世波 +1 位作者 施麦克 李宏 《传感技术学报》 北大核心 2025年第5期817-825,共9页
传统诊断方法难以实现儿童龋病的早期发现,深度学习技术主要应用在口腔X光片诊断,缺少可参考的数据集及诊断方法,导致口腔龋齿预防技术进展缓慢;因此提出了一种基于牙齿颌面轮廓与窝沟的儿童龋齿预防算法的医学标准,开发了一套判断牙齿... 传统诊断方法难以实现儿童龋病的早期发现,深度学习技术主要应用在口腔X光片诊断,缺少可参考的数据集及诊断方法,导致口腔龋齿预防技术进展缓慢;因此提出了一种基于牙齿颌面轮廓与窝沟的儿童龋齿预防算法的医学标准,开发了一套判断牙齿早期是否患龋的算法;采用U-Net网络和注意力机制实现牙齿颌面识别分类,分别对颌面轮廓和窝沟形态的标准进行分类训练并对比效果,进而对两个模型进行加权融合,在α=0.5,γ=0.5时,模型融合效果最佳,AUC(Area Under Curve)达到0.7792、准确率(ACC)达到0.9026、F1-score达到0.9061;实验结果表明:融合模型效果高于单独使用基于颌面轮廓的模型和单独使用基于窝沟的模型,为儿童预防龋齿提供了一种新的解决方案。 展开更多
关键词 龋齿 牙齿颌面图像 u-net网络 注意力机制
在线阅读 下载PDF
基于残差密集网络与注意力机制的图像降噪
19
作者 马荣恒 喻春雨 童亦新 《科学技术与工程》 北大核心 2025年第9期3795-3805,共11页
针对基于卷积神经网络图像降噪模型采用简单编码器-解码器结构而导致图像降噪性能差的问题,提出一种基于残差密集网络与注意力机制的残差密集图像降噪网络(residual dense image denoising network,RDIDNet)。首先,利用全局残差块增强... 针对基于卷积神经网络图像降噪模型采用简单编码器-解码器结构而导致图像降噪性能差的问题,提出一种基于残差密集网络与注意力机制的残差密集图像降噪网络(residual dense image denoising network,RDIDNet)。首先,利用全局残差块增强网络模型的非线性映射能力;其次,引入双元素卷积注意力模块以实现RDIDNet模型解码过程中的自适应特征融合;最后,将RDIDNet降噪模型和14种代表性降噪方法进行对比,并进行消融实验,验证在基准模型上使用RDU Sub-Network、DE-CAM、PSNRLoss进行网络优化的有效性。实验结果表明,在Set12数据集、BSD68数据集中,RDIDNet在峰值信噪比(peak signal to noise ratio,PSNR)、结构相似性(structural similarity,SSIM)指标上相比传统经典方法BM3D分别平均提高1.03 dB和0.0275;比基于Vision Transformers架构的SwinIR分别平均提高0.03 dB和0.0014;比基于CNN的最新降噪方法NHNet分别平均提高0.22 dB和0.0089。RDIDNet降噪网络更关注低频信息、模型训练更稳定,在有效消除图像噪声的同时能有效保留图像细节纹理,具有较好的表现。 展开更多
关键词 图像降噪 深度学习 残差网络 注意力机制
在线阅读 下载PDF
基于双分支残差交叉注意力的点云数据处理网络
20
作者 王家贤 冯秀芳 +1 位作者 崔海航 曹若琛 《计算机工程与设计》 北大核心 2025年第5期1256-1264,共9页
针对三维点云处理方法缺少对点的坐标信息和额外特征的综合考虑,导致特征表示不充分、稀疏点云鲁棒性下降等问题,提出一种基于双分支残差交叉注意力的点云数据处理网络DB-RCANet。采用上下两个具有不同特征提取网络结构的分支,上分支仅... 针对三维点云处理方法缺少对点的坐标信息和额外特征的综合考虑,导致特征表示不充分、稀疏点云鲁棒性下降等问题,提出一种基于双分支残差交叉注意力的点云数据处理网络DB-RCANet。采用上下两个具有不同特征提取网络结构的分支,上分支仅输入点云坐标信息,关注点云的空间几何特征,下分支输入点云额外特征(法向量或RGB颜色),关注点云的语义信息;利用并行残差交叉注意力模块捕捉坐标和额外特征之间的复杂依赖关系,自适应增强坐标和特征信息;引入通道空间注意力机制融合坐标和特征信息获得分类分割结果。该模型在ModelNet40和ShapeNet数据集上精度达到93.8%和86.3%,优于目前主流网络。 展开更多
关键词 点云 深度学习 双分支结构 残差交叉注意力 通道空间注意力 形状分类 部件分割
在线阅读 下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部