期刊文献+
共找到3,348篇文章
< 1 2 168 >
每页显示 20 50 100
基于多尺度混合注意力机制卷积神经网络的伦理决策模型设计 被引量:2
1
作者 刘国满 罗玉峰 +1 位作者 盛敬 陶珍 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第12期92-97,共6页
针对目前自动驾驶汽车伦理困境下很难做出确定、合理的决策,阻碍了自动驾驶技术的问题,设计了一种基于多尺度混合注意力机制卷积神经网络的自动驾驶汽车伦理决策模型。首先,依据卷积神经网络结构和功能以及伦理困境特点,设计卷积神经网... 针对目前自动驾驶汽车伦理困境下很难做出确定、合理的决策,阻碍了自动驾驶技术的问题,设计了一种基于多尺度混合注意力机制卷积神经网络的自动驾驶汽车伦理决策模型。首先,依据卷积神经网络结构和功能以及伦理困境特点,设计卷积神经网络训练模型和参数,运用训练集中伦理困境对该训练模型进行训练,构建多尺度混合注意力机制卷积神经网络模型;然后,运用测试集中伦理困境对该卷积神经网络模型进行测试和验证。结果表明:多尺度卷积神经网络模型相对于传统卷积神经网络,准确率方面有了较大改进,加入注意力机制卷积神经网络模型相对于未加入模型,稳定性得到加强;多尺度混合注意力机制卷积神经网络模型的准确率和稳定性都较高,最高准确率达到了89%。 展开更多
关键词 交通工程 自动驾驶汽车 伦理决策 注意力机制 卷积神经网络
在线阅读 下载PDF
一种基于注意力机制卷积神经网络模型的自动调制识别算法 被引量:8
2
作者 殷赞 王超杰 +4 位作者 程子恒 陈渤 甄卫民 靳睿敏 杨会贇 《电波科学学报》 CSCD 北大核心 2023年第5期773-779,共7页
自动调制识别是通信识别、电子侦察、干扰检测等领域中重要的环节.针对低信噪比(signal-tonoise ratio,SNR)条件下自动调制识别准确率不高的问题,构建了一种基于注意力机制的卷积神经网络(convolutional neural network,CNN)调制识别模... 自动调制识别是通信识别、电子侦察、干扰检测等领域中重要的环节.针对低信噪比(signal-tonoise ratio,SNR)条件下自动调制识别准确率不高的问题,构建了一种基于注意力机制的卷积神经网络(convolutional neural network,CNN)调制识别模型(sequential convolution-based attention model,SCAM),用于处理原始I/Q序列信号从而进行调制识别.通过在一维CNN模型中引入注意力机制,SCAM能够有效地在低SNR条件下提取原始I/Q序列信号中的特征信息,再通过特征融合的方式对多域特征信息进行联合提取,并将融合后的特征用于调制识别,从而提升了自动调制识别的准确率.对比传统CNN模型,开源数据集RML2016.10a上不同SNR环境条件下的调制识别实验表明,本文提出的SCAM模型能取得更高的调制类型识别准确率. 展开更多
关键词 自动调制识别 卷积神经网络(CNN) 注意力机制 低信噪比(SNR)
在线阅读 下载PDF
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
3
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
融合卷积神经网络和注意力机制的负荷识别方法 被引量:2
4
作者 赵毅涛 李钊 +3 位作者 刘兴龙 骆钊 王钢 沈鑫 《电力工程技术》 北大核心 2025年第1期227-235,共9页
对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境... 对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。 展开更多
关键词 非侵入式负荷监测(NILM) 负荷识别 卷积神经网络(CNN) 挤压-激励网络(SENet) 注意力机制 特征提取 U-I轨迹
在线阅读 下载PDF
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
5
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于注意力时间卷积神经网络的光伏功率概率预测 被引量:1
6
作者 李青 《太阳能学报》 北大核心 2025年第2期326-332,共7页
针对确定性光伏功率预测无法计算预测结果概率和波动范围的问题,采用改进时间卷积神经网络(TCNN)开展光伏功率概率预测。TCNN已用于各种时序预测任务,但其在输入序列很长情况下需增加卷积层来提升预测性能。在TCNN中引入稀疏注意力机制... 针对确定性光伏功率预测无法计算预测结果概率和波动范围的问题,采用改进时间卷积神经网络(TCNN)开展光伏功率概率预测。TCNN已用于各种时序预测任务,但其在输入序列很长情况下需增加卷积层来提升预测性能。在TCNN中引入稀疏注意力机制,构建注意力时间卷积神经网络(ATCNN),通过分层卷积结构提取时间依赖关系,利用稀疏注意力关注重要的时间步,构建的稀疏注意力层无需更深的架构即可扩展感受野,并使预测结果更具可解释性。在两个光伏数据集上的功率概率预测结果表明,ATCNN的预测准确性优于TCNN、时间融合解码器(TFT)等先进深度学习模型,同时对于感受野的扩展,ATCNN比TCNN需要的卷积层更少、训练速度更快,并能可视化预测过程中最重要的时间步。同卷积层情况下,ATCNN比TCNN的点预测损失小15.7%,概率预测损失小15.9%。 展开更多
关键词 光伏功率 预测 时间卷积网络 稀疏注意力机制 可解释性
在线阅读 下载PDF
基于多尺度通道注意力卷积神经网络的轴向柱塞泵故障诊断研究
7
作者 刘增光 张帅迪 +3 位作者 周焱 魏列江 岳大灵 冯珂 《机床与液压》 北大核心 2025年第14期124-130,共7页
针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑... 针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑靴磨损、松靴故障、中心弹簧失效),采集6种工作状态(正常状态及5种典型故障)下的z轴振动信号。以小波变换为信号预处理模块,将加速度传感器采集的一维振动信号转化为时频图并作为诊断模型的输入信号,采用不同尺度的卷积核对时频图进行特征提取。通过通道注意力为每个通道赋予不同的权重值,使模型能够集中学习与通道密切相关的特征信息,从而提高轴向柱塞泵的故障分类能力和诊断的效率。搭建轴向柱塞泵故障诊断实验平台,验证所提方法的有效性。结果表明:该模型对6种工作状态的诊断准确率达到99.65%,相比传统多尺度卷积神经网络模型提高了3.16%,验证了MSCA-CNN模型在轴向柱塞泵故障诊断中的优越性。 展开更多
关键词 故障诊断 卷积神经网络 通道注意力 多尺度特征 柱塞泵
在线阅读 下载PDF
基于循环神经网络与注意力机制的波动预测模型
8
作者 李希今 王祥任 刘金石 《吉林大学学报(理学版)》 北大核心 2025年第5期1397-1403,共7页
针对经典机器学习算法(如决策树、随机森林)在建模复杂隐式交互关系时预测准确率较低的问题,提出一个基于循环神经网络与注意力机制的波动预测模型.首先通过注意力机制计算各影响因素之间复杂的交互关系,然后采用循环神经网络学习表示... 针对经典机器学习算法(如决策树、随机森林)在建模复杂隐式交互关系时预测准确率较低的问题,提出一个基于循环神经网络与注意力机制的波动预测模型.首先通过注意力机制计算各影响因素之间复杂的交互关系,然后采用循环神经网络学习表示模型的隐变量,从而实现精准预测.与多个经典预测模型进行仿真对比实验的结果表明,该模型的预测准确率显著高于其他机器学习模型,从而为波动预测领域提供了一种更高效、精准的解决方案. 展开更多
关键词 循环神经网络 注意力机制 机器学习 预测模型
在线阅读 下载PDF
基于注意力机制与可变卷积神经网络的卫星视频运动目标检测
9
作者 马洲俊 陈锦铭 +1 位作者 刘浩林 张卡 《南京师大学报(自然科学版)》 北大核心 2025年第4期78-86,共9页
视频卫星能获得高空间分辨率的视频信息,为运动目标的检测和分析提供有效数据支撑.然而,由于卫星视频图像中目标像素比例低、纹理细节不清晰、背景复杂等缺点,从卫星视频中检测运动目标存在很大困难.为此,本文以YOLOv8为骨干网络,提出... 视频卫星能获得高空间分辨率的视频信息,为运动目标的检测和分析提供有效数据支撑.然而,由于卫星视频图像中目标像素比例低、纹理细节不清晰、背景复杂等缺点,从卫星视频中检测运动目标存在很大困难.为此,本文以YOLOv8为骨干网络,提出了一种基于注意力机制与可变卷积神经网络的卫星视频运动目标检测算法.首先,设计C2f-DCN模块替换原模型骨干网络中的C2f模块,以提高模型对不同尺度目标的特征提取能力.其次,在检测头前添加Shuffle Attention轻量级注意力机制,在保证模型计算速度的前提下增强重要特征,加强通道间信息沟通提高模型特征融合能力.最后,为了提高模型的学习能力和推理效率,采用Inner-CIoU损失函数,并引入辅助边界框概念来解决卫星视频图像中目标像素比例小的问题.利用SAT-MTB卫星视频影像数据集进行对比实验,实验结果表明本文算法的精确度、召回率、mAP50:95和F1分数分别为75.3%、62.8%、34.9%和68.48,相较于原始YOLOv8n网络,上述指标分别提高了11.6%、4.2%、3.0%和7.44,验证了本文方法的有效性和优越性. 展开更多
关键词 卫星视频 YOLOv8 轻量级注意力机制 可变形卷积 辅助边框回归
在线阅读 下载PDF
融合图神经网络和注意力机制的矿山无人运输车辆路径规划
10
作者 王桃 王霞 米宏军 《金属矿山》 北大核心 2025年第10期159-165,共7页
针对矿山无人运输车辆在复杂动态环境下路径规划效率低、实时性差、安全性不足等问题,提出了一种融合图神经网络(GNN)和注意力机制的路径规划方法。首先构建了基于道路拓扑的动态图结构,利用GNN对路网特征进行深度提取;其次,设计多头注... 针对矿山无人运输车辆在复杂动态环境下路径规划效率低、实时性差、安全性不足等问题,提出了一种融合图神经网络(GNN)和注意力机制的路径规划方法。首先构建了基于道路拓扑的动态图结构,利用GNN对路网特征进行深度提取;其次,设计多头注意力机制捕获路段间的长程依赖关系,并引入时空注意力模块处理动态环境信息;最后,基于强化学习框架实现路径规划的端到端训练。仿真试验表明:与传统A^(∗)算法相比,所提方法计算耗时减少45.3%,路径长度缩短12.7%;与Transformer方法相比,规划成功率提升19.1%,避障准确率提高14.4%。在实际矿区测试中,该方法能够有效应对复杂地形和动态障碍物,平均规划时间仅需0.3 s,为矿山无人运输车辆的安全高效运行提供了参考。 展开更多
关键词 矿山无人运输车辆 路径规划 神经网络 注意力机制 强化学习
在线阅读 下载PDF
基于残差神经网络和注意力机制的加工表面粗糙度识别 被引量:1
11
作者 范立想 朱钰浩 +2 位作者 陈书涵 姚继开 唐伟东 《机床与液压》 北大核心 2025年第11期126-132,共7页
表面粗糙度是衡量表面质量的重要指标之一,因此,开发能够快速、准确测量和识别表面粗糙度的技术具有广泛的应用前景。基于此,提出一种基于残差神经网络和注意力机制的电火花加工表面粗糙度检测技术。该技术首先对输入图像进行预处理,使... 表面粗糙度是衡量表面质量的重要指标之一,因此,开发能够快速、准确测量和识别表面粗糙度的技术具有广泛的应用前景。基于此,提出一种基于残差神经网络和注意力机制的电火花加工表面粗糙度检测技术。该技术首先对输入图像进行预处理,使用图像灰度处理降低原始信号的输入量。通过图像分块、噪声、旋转和翻转等方式进行数据增强,将增强后的数据输入深度学习模型中进行训练。深度学习模型利用残差神经网络和注意力机制,自动提取经电火花加工后的H13钢材料表面粗糙度的特征。实验结果表明:所提出的基于残差神经网络和注意力机制的表面粗糙度检测技术能够进行高效率的表面粗糙度检测;在12组粗糙度分类识别实验中,该深度学习模型相较于卷积神经网络(CNN),卷积神经网络和注意力机制(CNN-Attention)以及残差神经网络(ResNet)的准确率分别提高了9.10%、3.73%、4.11%;通过对加工后表面粗糙度图像进行4组分类,所提出模型验证准确率在95%以上,可用于工业生产及其他相关领域表面质量的快速检测。 展开更多
关键词 表面粗糙度识别 残差神经网络 注意力机制 电火花加工技术
在线阅读 下载PDF
基于注意力机制的多视图图神经网络社区问答专家推荐模型
12
作者 吴丽萍 熊玮楠 +1 位作者 苏磊 王瑞 《中文信息学报》 北大核心 2025年第4期105-116,共12页
社区问答专家推荐模型包括目标问题信息提取和专家信息提取两个子任务,现有研究通过计算目标问题与专家信息之间的相关性得分来为目标问题推荐合适的专家回答者。然而,现有研究通常在单一的问题标题视图上展开,往往忽略了问题标签、正... 社区问答专家推荐模型包括目标问题信息提取和专家信息提取两个子任务,现有研究通过计算目标问题与专家信息之间的相关性得分来为目标问题推荐合适的专家回答者。然而,现有研究通常在单一的问题标题视图上展开,往往忽略了问题标签、正文视图所蕴含的互补信息,并且没有从专家信息中学习出对应于目标问题的知识能力。为了充分计算目标问题与专家信息之间的相关性,该文提出了一种基于注意力机制的多视图图神经网络社区问答专家推荐模型,使用多视图图神经网络学习目标问题集和专家问题集的多视图表示,使用注意力机制学习专家对应于目标问题的知识能力。实验结果表明,在两个公开数据集上,该文提出的方法均优于基准方法。 展开更多
关键词 社区问答 专家推荐 多视图图神经网络 注意力机制
在线阅读 下载PDF
基于全局注意力卷积神经网络的刀具磨损预测
13
作者 金坚 卢文壮 +1 位作者 吴超逸 徐洛 《工具技术》 北大核心 2025年第7期134-138,共5页
刀具磨损状态的精准预测对于提高加工质量和加工效率有着重要意义,基于传统CNN的刀具磨损预测模型未考虑特征信息之间的交互汇聚,预测精度存在局限。针对此问题,本文提出一种基于全局注意力卷积神经网络(GAM-CNN)的刀具磨损预测模型。... 刀具磨损状态的精准预测对于提高加工质量和加工效率有着重要意义,基于传统CNN的刀具磨损预测模型未考虑特征信息之间的交互汇聚,预测精度存在局限。针对此问题,本文提出一种基于全局注意力卷积神经网络(GAM-CNN)的刀具磨损预测模型。该刀具磨损预测模型在卷积神经网络基础上添加全局注意力机制,该机制通过通道和空间双注意力将卷积神经网络提取到的特征进行加权汇聚,更好地突出重要特征并与预测值进行关联。预测实验结果表明,该预测模型的MAE为13.83μm、RMSE为17.33μm、MAPE为12.58%,均优于对比的未含全局注意力机制的CNN、CAM-CNN以及PSO-SVR模型。 展开更多
关键词 刀具磨损 预测 全局注意力机制 卷积神经网络
在线阅读 下载PDF
基于通道注意力机制的MIMO神经网络均衡算法
14
作者 户俊杰 延凤平 +2 位作者 郭浩 王鹏飞 骆长亮 《光通信技术》 北大核心 2025年第3期22-26,共5页
针对模分复用光传输系统中的模式串扰问题,提出了一种基于通道注意力机制的多输入多输出(MIMO)神经网络均衡算法(MIMO-NNE-CAM)算法。该算法通过引入通道注意力机制,使神经网络专注于更重要的信道特征,实现信号的有效均衡。为验证算法性... 针对模分复用光传输系统中的模式串扰问题,提出了一种基于通道注意力机制的多输入多输出(MIMO)神经网络均衡算法(MIMO-NNE-CAM)算法。该算法通过引入通道注意力机制,使神经网络专注于更重要的信道特征,实现信号的有效均衡。为验证算法性能,利用VPI Transmission仿真平台搭建了三模模分复用系统进行测试。实验结果表明:在满足误码率为1×10^(-3)的条件下,MIMO-NNE-CAM算法相较原始MIMO-NNE算法和最小均方(LMS)算法分别具有1.3dB和3.1dB的性能增益,且在强耦合情况下也能保持稳定的误码性能,展现出更快的收敛速度和更强的抗耦合能力。 展开更多
关键词 信道均衡 模分复用 神经网络 模间串扰 通道注意力机制
在线阅读 下载PDF
基于双注意力图神经网络的链路预测 被引量:2
15
作者 杨真真 林泽龙 杨永鹏 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期106-114,共9页
链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1... 链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1)大多数基于GNN的方法往往容易忽略为链路预测提供额外帮助的边信息的重要性;(2)大多数基于GNN的方法都仅捕获表示图的邻居节点间相似性的低频信息,忽略了表示邻居节点间差异性的高频信息;(3)大多数基于GNN的方法都未考虑输入特征矩阵的节点维度和特征维度两个维度,只关注其中一个维度。针对这些问题,提出了一种基于双注意力图神经网络(Dual Attention Graph Neural Network,DAGNN)的链路预测方法,该方法包含两条路径,以不同的角度更新节点表示。其中一条是基于图神经网络的路径,采用含边信息的频率自适应图注意力网络(Frequency Adaptive Graph Attention Network with Edge Information,FAGAT⁃EI)作为基础模型,有效地利用边信息增强节点之间的关系,并利用频率自适应机制平衡高低频率邻居信息的权重,从而缓解GNN的过度平滑问题;另一条是基于通道注意力网络的路径,提出了一种新的压缩-激励通道注意力模块(Squeeze and Excitation⁃Channel At⁃tention Module,SE⁃CAM)作为基础模型,充分考虑输入特征矩阵的节点维度和特征维度,并自动学习和调整每个节点的不同特征权重,从而得到更有意义的节点表示。最后在两个基准数据集上进行了实验,实验结果表明,提出的链路预测方法在Last⁃FM和Book⁃Crossing两个数据集上的AUC和ACC指标均优于其他基线模型,展现出了卓越的链路预测性能。 展开更多
关键词 链路预测 神经网络 注意力机制 压缩-激励模块 频率自适应
在线阅读 下载PDF
基于注意力卷积神经网络的水轮机健康状态评估研究
16
作者 谭啸 劳鹏飞 李立 《水电能源科学》 北大核心 2025年第5期178-181,共4页
水轮机健康状态评估对保障水电站的安全稳定运行具有重要意义。针对水轮机故障诊断过程中信号时序特征信息利用不足的问题,提出了一种数据驱动的水轮机健康状态评估方法。首先将传感器采集到的原始振动信号通过Morlet连续小波变换算法... 水轮机健康状态评估对保障水电站的安全稳定运行具有重要意义。针对水轮机故障诊断过程中信号时序特征信息利用不足的问题,提出了一种数据驱动的水轮机健康状态评估方法。首先将传感器采集到的原始振动信号通过Morlet连续小波变换算法转换为二维时频图像,然后将其输入到卷积神经网络中进行故障诊断。为提升模型的准确度,将Inception网络结构和卷积注意力模块引入到卷积神经网络中,实现多尺度的特征提取及自适应的特征权重调整。试验结果表明,所提出的模型在识别精度方面显著优于传统方法,能够辅助对水轮机的健康状态进行监测和分析,可为水轮机的预防性维修提供决策支持。 展开更多
关键词 健康状态评估 卷积神经网络 注意力机制 水轮机
在线阅读 下载PDF
基于双注意力时空图卷积神经网络的4D轨迹预测方法
17
作者 匡育衡 王正宁 +2 位作者 王正 石镇瑜 张毓丁 《电子科技大学学报》 北大核心 2025年第5期641-651,共11页
近年来,4D轨迹预测在空中交通管理系统中的重要性正在逐渐增加,以其为核心技术的冲突检测和解决、飞机异常行为监测、密集飞行区域管控等任务的智能化需求也在逐年上升。机场终端区和密集空域的状况错综复杂且不断变化,现有的方法无法... 近年来,4D轨迹预测在空中交通管理系统中的重要性正在逐渐增加,以其为核心技术的冲突检测和解决、飞机异常行为监测、密集飞行区域管控等任务的智能化需求也在逐年上升。机场终端区和密集空域的状况错综复杂且不断变化,现有的方法无法充分捕捉这两个场景下飞机之间的相互作用关系。为了应对这些挑战,提出了基于双注意力的时空图卷积神经网络模型来充分提取飞机之间的潜在时空相关性。该模型利用自注意力机制对邻接矩阵进行重构以便更好地捕捉图节点之间的相关性,并通过图注意力计算提取节点之间的时空特征,最终生成预测轨迹的概率分布。实验结果表明,与现有主流算法相比,利用自注意力机制重构的邻接矩阵和图注意力网络可以随着网络训练不断地优化,从而更好地反应节点之间的潜在关联,提升了4D轨迹预测结果的准确率。 展开更多
关键词 4D轨迹预测 时空图卷积神经网络 注意力机制 深度学习
在线阅读 下载PDF
基于注意力机制的神经网络优化模型的行驶疲劳度研究
18
作者 李博文 丁牧恒 +5 位作者 方美华 朱桂平 魏志勇 成巍 李亚云 卞双双 《计算机工程》 北大核心 2025年第10期87-96,共10页
疲劳驾驶是导致交通事故的主要因素之一。在人工智能领域,基于脑电图(EEG)的驾驶疲劳状态分类已成为重要研究方向。近年来,融合注意力机制的深度学习模型在EEG疲劳识别中得到了广泛应用。以SEED-VIG数据集作为研究对象,采用ReliefF特征... 疲劳驾驶是导致交通事故的主要因素之一。在人工智能领域,基于脑电图(EEG)的驾驶疲劳状态分类已成为重要研究方向。近年来,融合注意力机制的深度学习模型在EEG疲劳识别中得到了广泛应用。以SEED-VIG数据集作为研究对象,采用ReliefF特征选择算法,构建基于自注意力、多头注意力、通道注意力、空间注意力机制的卷积神经网络(CNN)、长短期记忆(LSTM)网络和支持向量机(SVM)优化模型。在SEED-VIG数据集提供的EEG数据上的实验结果表明,基于多模注意力机制的多种神经网络优化模型的准确率、召回率、F1值等指标均得到了有效提升,其中以平均准确率和标准偏差作为对比参数,可增强空间与通道信息的卷积块注意力模块(CBAM)-CNN模型的性能最佳,分别为84.7%和0.66。 展开更多
关键词 脑电图 疲劳度 特征 注意力机制 神经网络模型
在线阅读 下载PDF
融合注意力机制和轻量级卷积神经网络的胸部CT影像分类方法研究 被引量:1
19
作者 王威 许玉燕 +2 位作者 王新 黄文迪 袁平 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第4期429-437,共9页
同一疾病类型的CT影像也会由于患者患病严重程度不同而呈现差异,现主要临床诊断方法依赖医生专业能力及过往经验,客观性有待增强,效率有待提高。针对以上问题,提出一个融合注意力机制的CT分类网络—并联轻量级CT分类卷积神经网络(PC-CTN... 同一疾病类型的CT影像也会由于患者患病严重程度不同而呈现差异,现主要临床诊断方法依赖医生专业能力及过往经验,客观性有待增强,效率有待提高。针对以上问题,提出一个融合注意力机制的CT分类网络—并联轻量级CT分类卷积神经网络(PC-CTNet)。该网络主要由并联支路通道混洗(PCS)模块和深度高效跳跃连接(DES)模块组成。PCS模块采用双分支并联,融合了多尺度感受野的特征;DES模块则利用卷积和高效通道注意力提取有效的深层类间区分信息,并通过跳跃连接避免梯度消失。结果表明,PC-CTNet模型在包含5988张大小不一的CT数据集上分类准确率能达到98.46%,在包含194922张的开源数据集上分类准确率能达到98.75%。PC-CTNet的各项性能指标均接近现有的胸部CT分类网络,且其参数量和计算量约为0.32、75.58 M,分别为实验比较中胸部CT分类网络的10.17%和3.21%,拥有更高的参数效率和计算效率,能有效辅助医生诊断,提高诊断效率和客观性。 展开更多
关键词 注意力机制 胸部CT影像 卷积神经网络 PC-CTNet
在线阅读 下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:3
20
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
在线阅读 下载PDF
上一页 1 2 168 下一页 到第
使用帮助 返回顶部