期刊文献+
共找到3,209篇文章
< 1 2 161 >
每页显示 20 50 100
基于多尺度混合注意力机制卷积神经网络的伦理决策模型设计 被引量:2
1
作者 刘国满 罗玉峰 +1 位作者 盛敬 陶珍 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第12期92-97,共6页
针对目前自动驾驶汽车伦理困境下很难做出确定、合理的决策,阻碍了自动驾驶技术的问题,设计了一种基于多尺度混合注意力机制卷积神经网络的自动驾驶汽车伦理决策模型。首先,依据卷积神经网络结构和功能以及伦理困境特点,设计卷积神经网... 针对目前自动驾驶汽车伦理困境下很难做出确定、合理的决策,阻碍了自动驾驶技术的问题,设计了一种基于多尺度混合注意力机制卷积神经网络的自动驾驶汽车伦理决策模型。首先,依据卷积神经网络结构和功能以及伦理困境特点,设计卷积神经网络训练模型和参数,运用训练集中伦理困境对该训练模型进行训练,构建多尺度混合注意力机制卷积神经网络模型;然后,运用测试集中伦理困境对该卷积神经网络模型进行测试和验证。结果表明:多尺度卷积神经网络模型相对于传统卷积神经网络,准确率方面有了较大改进,加入注意力机制卷积神经网络模型相对于未加入模型,稳定性得到加强;多尺度混合注意力机制卷积神经网络模型的准确率和稳定性都较高,最高准确率达到了89%。 展开更多
关键词 交通工程 自动驾驶汽车 伦理决策 注意力机制 卷积神经网络
在线阅读 下载PDF
一种基于注意力机制卷积神经网络模型的自动调制识别算法 被引量:7
2
作者 殷赞 王超杰 +4 位作者 程子恒 陈渤 甄卫民 靳睿敏 杨会贇 《电波科学学报》 CSCD 北大核心 2023年第5期773-779,共7页
自动调制识别是通信识别、电子侦察、干扰检测等领域中重要的环节.针对低信噪比(signal-tonoise ratio,SNR)条件下自动调制识别准确率不高的问题,构建了一种基于注意力机制的卷积神经网络(convolutional neural network,CNN)调制识别模... 自动调制识别是通信识别、电子侦察、干扰检测等领域中重要的环节.针对低信噪比(signal-tonoise ratio,SNR)条件下自动调制识别准确率不高的问题,构建了一种基于注意力机制的卷积神经网络(convolutional neural network,CNN)调制识别模型(sequential convolution-based attention model,SCAM),用于处理原始I/Q序列信号从而进行调制识别.通过在一维CNN模型中引入注意力机制,SCAM能够有效地在低SNR条件下提取原始I/Q序列信号中的特征信息,再通过特征融合的方式对多域特征信息进行联合提取,并将融合后的特征用于调制识别,从而提升了自动调制识别的准确率.对比传统CNN模型,开源数据集RML2016.10a上不同SNR环境条件下的调制识别实验表明,本文提出的SCAM模型能取得更高的调制类型识别准确率. 展开更多
关键词 自动调制识别 卷积神经网络(CNN) 注意力机制 低信噪比(SNR)
在线阅读 下载PDF
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
3
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
融合卷积神经网络和注意力机制的负荷识别方法 被引量:1
4
作者 赵毅涛 李钊 +3 位作者 刘兴龙 骆钊 王钢 沈鑫 《电力工程技术》 北大核心 2025年第1期227-235,共9页
对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境... 对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。 展开更多
关键词 非侵入式负荷监测(NILM) 负荷识别 卷积神经网络(CNN) 挤压-激励网络(SENet) 注意力机制 特征提取 U-I轨迹
在线阅读 下载PDF
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
5
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于多尺度通道注意力卷积神经网络的轴向柱塞泵故障诊断研究
6
作者 刘增光 张帅迪 +3 位作者 周焱 魏列江 岳大灵 冯珂 《机床与液压》 北大核心 2025年第14期124-130,共7页
针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑... 针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑靴磨损、松靴故障、中心弹簧失效),采集6种工作状态(正常状态及5种典型故障)下的z轴振动信号。以小波变换为信号预处理模块,将加速度传感器采集的一维振动信号转化为时频图并作为诊断模型的输入信号,采用不同尺度的卷积核对时频图进行特征提取。通过通道注意力为每个通道赋予不同的权重值,使模型能够集中学习与通道密切相关的特征信息,从而提高轴向柱塞泵的故障分类能力和诊断的效率。搭建轴向柱塞泵故障诊断实验平台,验证所提方法的有效性。结果表明:该模型对6种工作状态的诊断准确率达到99.65%,相比传统多尺度卷积神经网络模型提高了3.16%,验证了MSCA-CNN模型在轴向柱塞泵故障诊断中的优越性。 展开更多
关键词 故障诊断 卷积神经网络 通道注意力 多尺度特征 柱塞泵
在线阅读 下载PDF
基于注意力时间卷积神经网络的光伏功率概率预测
7
作者 李青 《太阳能学报》 北大核心 2025年第2期326-332,共7页
针对确定性光伏功率预测无法计算预测结果概率和波动范围的问题,采用改进时间卷积神经网络(TCNN)开展光伏功率概率预测。TCNN已用于各种时序预测任务,但其在输入序列很长情况下需增加卷积层来提升预测性能。在TCNN中引入稀疏注意力机制... 针对确定性光伏功率预测无法计算预测结果概率和波动范围的问题,采用改进时间卷积神经网络(TCNN)开展光伏功率概率预测。TCNN已用于各种时序预测任务,但其在输入序列很长情况下需增加卷积层来提升预测性能。在TCNN中引入稀疏注意力机制,构建注意力时间卷积神经网络(ATCNN),通过分层卷积结构提取时间依赖关系,利用稀疏注意力关注重要的时间步,构建的稀疏注意力层无需更深的架构即可扩展感受野,并使预测结果更具可解释性。在两个光伏数据集上的功率概率预测结果表明,ATCNN的预测准确性优于TCNN、时间融合解码器(TFT)等先进深度学习模型,同时对于感受野的扩展,ATCNN比TCNN需要的卷积层更少、训练速度更快,并能可视化预测过程中最重要的时间步。同卷积层情况下,ATCNN比TCNN的点预测损失小15.7%,概率预测损失小15.9%。 展开更多
关键词 光伏功率 预测 时间卷积网络 稀疏注意力机制 可解释性
在线阅读 下载PDF
基于注意力机制的多视图图神经网络社区问答专家推荐模型
8
作者 吴丽萍 熊玮楠 +1 位作者 苏磊 王瑞 《中文信息学报》 北大核心 2025年第4期105-116,共12页
社区问答专家推荐模型包括目标问题信息提取和专家信息提取两个子任务,现有研究通过计算目标问题与专家信息之间的相关性得分来为目标问题推荐合适的专家回答者。然而,现有研究通常在单一的问题标题视图上展开,往往忽略了问题标签、正... 社区问答专家推荐模型包括目标问题信息提取和专家信息提取两个子任务,现有研究通过计算目标问题与专家信息之间的相关性得分来为目标问题推荐合适的专家回答者。然而,现有研究通常在单一的问题标题视图上展开,往往忽略了问题标签、正文视图所蕴含的互补信息,并且没有从专家信息中学习出对应于目标问题的知识能力。为了充分计算目标问题与专家信息之间的相关性,该文提出了一种基于注意力机制的多视图图神经网络社区问答专家推荐模型,使用多视图图神经网络学习目标问题集和专家问题集的多视图表示,使用注意力机制学习专家对应于目标问题的知识能力。实验结果表明,在两个公开数据集上,该文提出的方法均优于基准方法。 展开更多
关键词 社区问答 专家推荐 多视图图神经网络 注意力机制
在线阅读 下载PDF
基于全局注意力卷积神经网络的刀具磨损预测
9
作者 金坚 卢文壮 +1 位作者 吴超逸 徐洛 《工具技术》 北大核心 2025年第7期134-138,共5页
刀具磨损状态的精准预测对于提高加工质量和加工效率有着重要意义,基于传统CNN的刀具磨损预测模型未考虑特征信息之间的交互汇聚,预测精度存在局限。针对此问题,本文提出一种基于全局注意力卷积神经网络(GAM-CNN)的刀具磨损预测模型。... 刀具磨损状态的精准预测对于提高加工质量和加工效率有着重要意义,基于传统CNN的刀具磨损预测模型未考虑特征信息之间的交互汇聚,预测精度存在局限。针对此问题,本文提出一种基于全局注意力卷积神经网络(GAM-CNN)的刀具磨损预测模型。该刀具磨损预测模型在卷积神经网络基础上添加全局注意力机制,该机制通过通道和空间双注意力将卷积神经网络提取到的特征进行加权汇聚,更好地突出重要特征并与预测值进行关联。预测实验结果表明,该预测模型的MAE为13.83μm、RMSE为17.33μm、MAPE为12.58%,均优于对比的未含全局注意力机制的CNN、CAM-CNN以及PSO-SVR模型。 展开更多
关键词 刀具磨损 预测 全局注意力机制 卷积神经网络
在线阅读 下载PDF
基于通道注意力机制的MIMO神经网络均衡算法
10
作者 户俊杰 延凤平 +2 位作者 郭浩 王鹏飞 骆长亮 《光通信技术》 北大核心 2025年第3期22-26,共5页
针对模分复用光传输系统中的模式串扰问题,提出了一种基于通道注意力机制的多输入多输出(MIMO)神经网络均衡算法(MIMO-NNE-CAM)算法。该算法通过引入通道注意力机制,使神经网络专注于更重要的信道特征,实现信号的有效均衡。为验证算法性... 针对模分复用光传输系统中的模式串扰问题,提出了一种基于通道注意力机制的多输入多输出(MIMO)神经网络均衡算法(MIMO-NNE-CAM)算法。该算法通过引入通道注意力机制,使神经网络专注于更重要的信道特征,实现信号的有效均衡。为验证算法性能,利用VPI Transmission仿真平台搭建了三模模分复用系统进行测试。实验结果表明:在满足误码率为1×10^(-3)的条件下,MIMO-NNE-CAM算法相较原始MIMO-NNE算法和最小均方(LMS)算法分别具有1.3dB和3.1dB的性能增益,且在强耦合情况下也能保持稳定的误码性能,展现出更快的收敛速度和更强的抗耦合能力。 展开更多
关键词 信道均衡 模分复用 神经网络 模间串扰 通道注意力机制
在线阅读 下载PDF
基于残差神经网络和注意力机制的加工表面粗糙度识别
11
作者 范立想 朱钰浩 +2 位作者 陈书涵 姚继开 唐伟东 《机床与液压》 北大核心 2025年第11期126-132,共7页
表面粗糙度是衡量表面质量的重要指标之一,因此,开发能够快速、准确测量和识别表面粗糙度的技术具有广泛的应用前景。基于此,提出一种基于残差神经网络和注意力机制的电火花加工表面粗糙度检测技术。该技术首先对输入图像进行预处理,使... 表面粗糙度是衡量表面质量的重要指标之一,因此,开发能够快速、准确测量和识别表面粗糙度的技术具有广泛的应用前景。基于此,提出一种基于残差神经网络和注意力机制的电火花加工表面粗糙度检测技术。该技术首先对输入图像进行预处理,使用图像灰度处理降低原始信号的输入量。通过图像分块、噪声、旋转和翻转等方式进行数据增强,将增强后的数据输入深度学习模型中进行训练。深度学习模型利用残差神经网络和注意力机制,自动提取经电火花加工后的H13钢材料表面粗糙度的特征。实验结果表明:所提出的基于残差神经网络和注意力机制的表面粗糙度检测技术能够进行高效率的表面粗糙度检测;在12组粗糙度分类识别实验中,该深度学习模型相较于卷积神经网络(CNN),卷积神经网络和注意力机制(CNN-Attention)以及残差神经网络(ResNet)的准确率分别提高了9.10%、3.73%、4.11%;通过对加工后表面粗糙度图像进行4组分类,所提出模型验证准确率在95%以上,可用于工业生产及其他相关领域表面质量的快速检测。 展开更多
关键词 表面粗糙度识别 残差神经网络 注意力机制 电火花加工技术
在线阅读 下载PDF
基于双注意力图神经网络的链路预测 被引量:1
12
作者 杨真真 林泽龙 杨永鹏 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期106-114,共9页
链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1... 链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1)大多数基于GNN的方法往往容易忽略为链路预测提供额外帮助的边信息的重要性;(2)大多数基于GNN的方法都仅捕获表示图的邻居节点间相似性的低频信息,忽略了表示邻居节点间差异性的高频信息;(3)大多数基于GNN的方法都未考虑输入特征矩阵的节点维度和特征维度两个维度,只关注其中一个维度。针对这些问题,提出了一种基于双注意力图神经网络(Dual Attention Graph Neural Network,DAGNN)的链路预测方法,该方法包含两条路径,以不同的角度更新节点表示。其中一条是基于图神经网络的路径,采用含边信息的频率自适应图注意力网络(Frequency Adaptive Graph Attention Network with Edge Information,FAGAT⁃EI)作为基础模型,有效地利用边信息增强节点之间的关系,并利用频率自适应机制平衡高低频率邻居信息的权重,从而缓解GNN的过度平滑问题;另一条是基于通道注意力网络的路径,提出了一种新的压缩-激励通道注意力模块(Squeeze and Excitation⁃Channel At⁃tention Module,SE⁃CAM)作为基础模型,充分考虑输入特征矩阵的节点维度和特征维度,并自动学习和调整每个节点的不同特征权重,从而得到更有意义的节点表示。最后在两个基准数据集上进行了实验,实验结果表明,提出的链路预测方法在Last⁃FM和Book⁃Crossing两个数据集上的AUC和ACC指标均优于其他基线模型,展现出了卓越的链路预测性能。 展开更多
关键词 链路预测 神经网络 注意力机制 压缩-激励模块 频率自适应
在线阅读 下载PDF
基于注意力卷积神经网络的水轮机健康状态评估研究
13
作者 谭啸 劳鹏飞 李立 《水电能源科学》 北大核心 2025年第5期178-181,共4页
水轮机健康状态评估对保障水电站的安全稳定运行具有重要意义。针对水轮机故障诊断过程中信号时序特征信息利用不足的问题,提出了一种数据驱动的水轮机健康状态评估方法。首先将传感器采集到的原始振动信号通过Morlet连续小波变换算法... 水轮机健康状态评估对保障水电站的安全稳定运行具有重要意义。针对水轮机故障诊断过程中信号时序特征信息利用不足的问题,提出了一种数据驱动的水轮机健康状态评估方法。首先将传感器采集到的原始振动信号通过Morlet连续小波变换算法转换为二维时频图像,然后将其输入到卷积神经网络中进行故障诊断。为提升模型的准确度,将Inception网络结构和卷积注意力模块引入到卷积神经网络中,实现多尺度的特征提取及自适应的特征权重调整。试验结果表明,所提出的模型在识别精度方面显著优于传统方法,能够辅助对水轮机的健康状态进行监测和分析,可为水轮机的预防性维修提供决策支持。 展开更多
关键词 健康状态评估 卷积神经网络 注意力机制 水轮机
在线阅读 下载PDF
融合注意力机制和轻量级卷积神经网络的胸部CT影像分类方法研究 被引量:1
14
作者 王威 许玉燕 +2 位作者 王新 黄文迪 袁平 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第4期429-437,共9页
同一疾病类型的CT影像也会由于患者患病严重程度不同而呈现差异,现主要临床诊断方法依赖医生专业能力及过往经验,客观性有待增强,效率有待提高。针对以上问题,提出一个融合注意力机制的CT分类网络—并联轻量级CT分类卷积神经网络(PC-CTN... 同一疾病类型的CT影像也会由于患者患病严重程度不同而呈现差异,现主要临床诊断方法依赖医生专业能力及过往经验,客观性有待增强,效率有待提高。针对以上问题,提出一个融合注意力机制的CT分类网络—并联轻量级CT分类卷积神经网络(PC-CTNet)。该网络主要由并联支路通道混洗(PCS)模块和深度高效跳跃连接(DES)模块组成。PCS模块采用双分支并联,融合了多尺度感受野的特征;DES模块则利用卷积和高效通道注意力提取有效的深层类间区分信息,并通过跳跃连接避免梯度消失。结果表明,PC-CTNet模型在包含5988张大小不一的CT数据集上分类准确率能达到98.46%,在包含194922张的开源数据集上分类准确率能达到98.75%。PC-CTNet的各项性能指标均接近现有的胸部CT分类网络,且其参数量和计算量约为0.32、75.58 M,分别为实验比较中胸部CT分类网络的10.17%和3.21%,拥有更高的参数效率和计算效率,能有效辅助医生诊断,提高诊断效率和客观性。 展开更多
关键词 注意力机制 胸部CT影像 卷积神经网络 PC-CTNet
在线阅读 下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:3
15
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
在线阅读 下载PDF
基于多尺度注意力机制的实例分割卷积神经网络
16
作者 王改华 林锦衡 程磊 《计算机应用与软件》 北大核心 2024年第3期202-206,232,共6页
在Mask R-CNN实例分割模型的基础上提出一种新的深度学习方法MixedMask。该方法提出并应用两种有效的策略:(1)使用混合尺度的卷积核,提高网络对分辨率较低实例的提取能力;(2)在压缩激励网络的基础上进行改进,解决原网络中降低维度导致... 在Mask R-CNN实例分割模型的基础上提出一种新的深度学习方法MixedMask。该方法提出并应用两种有效的策略:(1)使用混合尺度的卷积核,提高网络对分辨率较低实例的提取能力;(2)在压缩激励网络的基础上进行改进,解决原网络中降低维度导致的通道信息丢失问题。在气球数据集和xBD数据集上进行测试,该算法分别达到了83.46%和58.92%的AP(IoU=50),相比Mask R-CNN模型,分别提升了1.3%和5.9%。 展开更多
关键词 实例分割 注意力机制 混合卷积
在线阅读 下载PDF
基于注意力循环神经网络的联合深度推荐模型 被引量:1
17
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
在线阅读 下载PDF
基于注意力机制多尺度卷积神经网络的轴承故障诊断 被引量:3
18
作者 孙俊静 顾幸生 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期247-256,共10页
提出了基于注意力机制的多尺度卷积神经网络(Multi-scale and Attentive Convolutional Neural Network,MACNN)进行轴承故障分类,该模型以一维Resnet18网络结构为主体,卷积模块采用残差模块和空洞卷积并行方式以达到扩大感受野、避免特... 提出了基于注意力机制的多尺度卷积神经网络(Multi-scale and Attentive Convolutional Neural Network,MACNN)进行轴承故障分类,该模型以一维Resnet18网络结构为主体,卷积模块采用残差模块和空洞卷积并行方式以达到扩大感受野、避免特征信息丢失的目的,同时利用注意力机制可以自动提取有用特征的能力,将模型提取特征作为输入送入注意力机制模块,进一步提高模型故障分类能力。此外,采用边界平衡生成对抗网络(Boundary Equilibrium Generative Adversarial Networks,BEGAN)模型对故障数据增强,改变不平衡数据集的比例,增加数据集样本数量,降低MACNN模型的过拟合,提高诊断的准确率。在帕德博恩轴承数据集(Paderborn University Dataset,PU)上验证MACNN模型,实验结果表明,该模型在特征提取和故障分类方面都表现出了良好的性能,优于当前主流模型。 展开更多
关键词 故障诊断 卷积神经网络 注意力机制 空洞卷积 BEGAN
在线阅读 下载PDF
基于时序分解和注意力图神经网络的交通预测
19
作者 杨永鹏 杨震 杨真真 《数据采集与处理》 北大核心 2025年第2期417-430,共14页
如何有效挖掘隐藏在交通数据中的时空依赖信息、动态信息和空间异质信息一直是交通预测任务面临的关键问题。本文提出了一种基于时序分解和注意力图神经网络(Time‑series decomposition and attention graph neural network,TDAGNN)的... 如何有效挖掘隐藏在交通数据中的时空依赖信息、动态信息和空间异质信息一直是交通预测任务面临的关键问题。本文提出了一种基于时序分解和注意力图神经网络(Time‑series decomposition and attention graph neural network,TDAGNN)的交通预测模型。采用双分支时序分解卷积神经网络(Dual time‑series decomposition convolutional neural network,DTDCNN)从复杂的交通数据中挖掘时间依赖信息;采用多头交互注意力网络(Multi‑head interactive attention,MIA)对原始交通特征和局部增强特征进行交互学习,以深入挖掘交通数据的异质信息和动态信息;引入自缩放动态扩散图神经网络(Self‑scaling dynamic diffusion graph neural network,SDDGNN)在获取交通数据空间依赖信息的同时,避免图神经网络的尺度失真问题;将提出的TDAGNN应用于经典交通数据PEMS04、PEMS08、METR‑LA和PEMS‑BAY的交通预测实验中。实验结果表明,提出模型的平均MAE、RMSE和MAPE比其他经典算法最大可分别提高14.64、23.68和9.41%,从而证明其具有较高的交通预测精度。 展开更多
关键词 交通预测 时序分解 神经网络 注意力机制 局部增强网络
在线阅读 下载PDF
融合注意力机制和新型卷积神经网络的市政道路病害识别 被引量:2
20
作者 任泳洁 吴立朋 《科学技术与工程》 北大核心 2024年第20期8663-8672,共10页
环境和荷载协同作用导致的路面病害对道路使用性能和安全性能的影响日益突出。现有图像智能识别算法难以实现处理速度和计算量的平衡。针对道路病害快速准确实时识别的需求,对石家庄损伤较为严重的路面进行实地拍照,结合已有图片,采用... 环境和荷载协同作用导致的路面病害对道路使用性能和安全性能的影响日益突出。现有图像智能识别算法难以实现处理速度和计算量的平衡。针对道路病害快速准确实时识别的需求,对石家庄损伤较为严重的路面进行实地拍照,结合已有图片,采用数据增强技术构建了市政道路病害数据集,并且提出了一种基于MobileNetV3网络的轻量化道路病害识别网络模型GEM-MobileNetV3。该模型首先使用Ghost模块代替MobileNetV3网络基本单元中的1×1卷积;然后结合改进后的高效通道注意力机制(efficient channel attention,ECA)模块提取病害目标的重要特征;最后将网络浅层的ReLU激活函数替换为泛化能力更强的Mish激活函数,提高模型的整体性能。通过消融实验与对比实验,验证了新模型的有效性。实验结果表明,新模型准确率达到96.33%,其参数量与计算量较MobileNetV3模型分别降低了37.9%和36%。提出的新模型在保持较高识别准确率的同时有效降低了模型复杂度,为在低成本计算平台上实现高准确率实时识别提供了新途径。 展开更多
关键词 注意力机制 深度学习 卷积神经网络(CNN) 道路病害识别
在线阅读 下载PDF
上一页 1 2 161 下一页 到第
使用帮助 返回顶部