期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
融合SA注意力机制的YOLO5s在石油油管表面缺陷检测的应用
1
作者 郭桂标 邢雪 +2 位作者 刘宇琦 王超 孙明革 《机床与液压》 北大核心 2024年第24期228-235,共8页
针对石油厂油管表面缺陷检测存在检测精度低、速度慢和模型复杂等问题,提出一种SA-YOLO算法。以YOLOv5s模型为基础,对原数据集进行预处理,采用BoTNet Transformer结构代替Backbone特征主干的部分卷积,并用multi-head self-attention(MH... 针对石油厂油管表面缺陷检测存在检测精度低、速度慢和模型复杂等问题,提出一种SA-YOLO算法。以YOLOv5s模型为基础,对原数据集进行预处理,采用BoTNet Transformer结构代替Backbone特征主干的部分卷积,并用multi-head self-attention(MHSA)替换卷积层,以减少网络层,同时提高获取全局信息的能力;最后,将Shuffle Attention(SA)注意力机制融合到C3结构中,根据每个位置的重要性得到注意力权重,从而提高模型的泛化能力和计算效率,减少运行时间。实验结果表明:SA-YOLO算法在石油厂采集的数据集上的均值平均精度(mAP)达到了93%,较原YOLOv5s算法提高了3.3%,检测速度以及检测精度均明显提高。 展开更多
关键词 缺陷检测 BoTNet Transformer结构 Shuffle Attention(sa)注意力机制
在线阅读 下载PDF
优化CNN-BiGRU-SA组合模型的BDS-3超短期钟差预报
2
作者 蔡茂 潘雄 +1 位作者 张龙杰 周秀鹏 《导航定位学报》 北大核心 2025年第4期60-69,共10页
针对钟差数据的非线性特点及单一模型在处理长程依赖问题中的局限性,提出一种融合卷积神经网络(CNN)-双向门控循环单元(BiGRU)-自注意力机制(SA)的北斗三号全球卫星导航系统(BDS-3)超短期钟差预报方法:利用CNN提取钟差数据中的非线性特... 针对钟差数据的非线性特点及单一模型在处理长程依赖问题中的局限性,提出一种融合卷积神经网络(CNN)-双向门控循环单元(BiGRU)-自注意力机制(SA)的北斗三号全球卫星导航系统(BDS-3)超短期钟差预报方法:利用CNN提取钟差数据中的非线性特征,通过BiGRU建模时序依赖关系,引入SA机制以动态分配特征权重;然后,进一步结合混沌映射与莱维(Levy)飞行策略改进北方苍鹰优化(INGO)算法,优化组合模型的超参数,构建INGO-CNN-BiGRUSA组合钟差预报模型;最后,利用德国地球科学研究中心提供的BDS-3钟差数据从原子钟类型、不同采样间隔进行1 h、3 h、6 h的超短期预报,从权重选择、超参数优化、预报精度、预报稳定度等方面验证组合模型的实用性。结果表明,该组合模型在超短期预报中具有较高的精度和稳定度,平均精度优于0.2 ns,平均稳定度优于0.25 ns。 展开更多
关键词 钟差预报 超参数 卷积神经网络(CNN) 双向门控循环单元(BiGRU) 注意力机制(sa)
在线阅读 下载PDF
基于改进YOLOv8n的船舶设备拆装流程规范性评估方法
3
作者 张振东 管聪 +2 位作者 张泽辉 吴超 丁学文 《中国舰船研究》 北大核心 2025年第2期140-150,共11页
[目的]船舶机舱作业规范性是船舶安全管控的关键部分,因此船员实操考试将船舶设备拆装作为一个重要考核项。为提升船员实操考试的电子化和智能化水平,提出一种基于计算机视觉的船舶设备拆装流程规范性的自动化识别方法。[方法]首先,以YO... [目的]船舶机舱作业规范性是船舶安全管控的关键部分,因此船员实操考试将船舶设备拆装作为一个重要考核项。为提升船员实操考试的电子化和智能化水平,提出一种基于计算机视觉的船舶设备拆装流程规范性的自动化识别方法。[方法]首先,以YOLOv8n构建船舶设备检测模型的骨干网络,并引入高效通道注意力机制(SA),以提高模型特征提取能力与训练效率;然后,在颈部网络中引入重参数化泛化特征的金字塔网络(GFPN)融合结构,以提高模型的多尺度特征融合能力;最后,引入动态非单调聚焦机制损失函数(WIoU)来替换原CIoU损失函数,以提高模型精度。[结果]自建数据集的试验结果表明:与YOLOv8n相比,改进目标识别算法的平均精度均值提高了0.15,实时检测的每秒帧数提升了0.6,可以准确识别齿轮泵的拆装流程。[结论]该改进算法具有更强的识别能力,可以更好地应用于船舶设备拆装流程规范性的识别任务。 展开更多
关键词 船舶设备 拆除和安装 目标检测 注意力机制(sa) 泛化特征金字塔网络(GFPN) 动态非单调聚焦机制(WIoU)损失函数
在线阅读 下载PDF
RF-SA-GRU模型的股价预测研究 被引量:7
4
作者 邹婕 李路 《计算机工程与应用》 CSCD 北大核心 2023年第15期300-309,共10页
针对股票具有多因子、高随机性和非平稳性等复杂特征,利用门控循环单元(GRU)网络直接进行股价预测效果较差的问题。在融合自注意力机制(SA)和GRU,构建SA-GRU模型的基础上,引入降维处理技术随机森林(RF)算法,针对股票收盘价筛选其他因子... 针对股票具有多因子、高随机性和非平稳性等复杂特征,利用门控循环单元(GRU)网络直接进行股价预测效果较差的问题。在融合自注意力机制(SA)和GRU,构建SA-GRU模型的基础上,引入降维处理技术随机森林(RF)算法,针对股票收盘价筛选其他因子,将经过降维的股票因子数据作为SA-GRU模型的输入。基于双层GRU网络提取股票因子间的依赖关系,再利用SA加强对重要因子的关注和因子内部的联系,得到加入注意力权重后的股票因子数据,通过全连接层输出股价预测值,从而构建RF-SA-GRU混合模型。选取涉及18个基础行业的18只股票进行股价预测,实验显示RF-SA-GRU模型在18只股票上均取得好的预测效果,且预测精度和稳定性均优于其他模型。此外,选取3个指数进行收盘点位预测,实验显示RF-SA-GRU模型在股指预测方面依旧具有更好的预测性能。 展开更多
关键词 股票价格预测 随机森林(RF) 注意力机制(sa) 门控循环单元(GRU)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部