自然场景中的实体标志,如商标、交通标志等,易受拍摄角度、所依附物体形变、尺度变化等影响,导致检测精度降低.为此,提出一种注意力引导的标志检测与识别网络(attention guided logo detection and recognition network,AGLDN),联合优...自然场景中的实体标志,如商标、交通标志等,易受拍摄角度、所依附物体形变、尺度变化等影响,导致检测精度降低.为此,提出一种注意力引导的标志检测与识别网络(attention guided logo detection and recognition network,AGLDN),联合优化模型对多尺度变化和复杂形变的鲁棒性.首先通过标志模板图像搜集及掩码生成、标志背景图像选取和标志图像生成创建标志合成数据集;然后基于RetinaNet和FPN提取多尺度特征并形成高级语义特征映射;最后利用注意力机制引导网络关注标志区域,克服目标变形对特征鲁棒性的影响,实现标志检测与识别.实验结果表明,所提方法可以有效降低尺度变化、非刚性形变的影响,提高标志检测准确率.展开更多
当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利...当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利于提取多粒度的语义信息.针对上述问题,本文提出了融合引导注意力的中文长文本摘要生成(Chinese Long text Summarization with Guided Attention,CLSGA)方法.首先,针对中文长文本摘要生成任务,利用抽取模型灵活抽取长文本中的核心词汇和语句,构建引导文本,用以指导生成模型在编码过程中将注意力集中于更重要的信息.其次,设计中文长文本词表,将文本结构长度由字统计改变至词组统计,有利于提取更加丰富的多粒度特征,进一步引入层次位置分解编码,高效扩展长文本的位置编码,加速网络收敛.最后,以局部注意力机制为骨干,同时结合引导注意力机制,以此有效捕捉长文本跨度下的重要信息,提高摘要生成的精度.在四个不同长度的公共中文摘要数据集LCSTS(大规模中文短文本摘要数据集)、CNewSum(大规模中国新闻摘要数据集)、NLPCC2017和SFZY2020上的实验结果表明:本文方法对于长文本摘要生成具有显著优势,能够有效提高ROUGE-1、ROUGE-2、ROUGE-L值.展开更多
文摘自然场景中的实体标志,如商标、交通标志等,易受拍摄角度、所依附物体形变、尺度变化等影响,导致检测精度降低.为此,提出一种注意力引导的标志检测与识别网络(attention guided logo detection and recognition network,AGLDN),联合优化模型对多尺度变化和复杂形变的鲁棒性.首先通过标志模板图像搜集及掩码生成、标志背景图像选取和标志图像生成创建标志合成数据集;然后基于RetinaNet和FPN提取多尺度特征并形成高级语义特征映射;最后利用注意力机制引导网络关注标志区域,克服目标变形对特征鲁棒性的影响,实现标志检测与识别.实验结果表明,所提方法可以有效降低尺度变化、非刚性形变的影响,提高标志检测准确率.
文摘当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利于提取多粒度的语义信息.针对上述问题,本文提出了融合引导注意力的中文长文本摘要生成(Chinese Long text Summarization with Guided Attention,CLSGA)方法.首先,针对中文长文本摘要生成任务,利用抽取模型灵活抽取长文本中的核心词汇和语句,构建引导文本,用以指导生成模型在编码过程中将注意力集中于更重要的信息.其次,设计中文长文本词表,将文本结构长度由字统计改变至词组统计,有利于提取更加丰富的多粒度特征,进一步引入层次位置分解编码,高效扩展长文本的位置编码,加速网络收敛.最后,以局部注意力机制为骨干,同时结合引导注意力机制,以此有效捕捉长文本跨度下的重要信息,提高摘要生成的精度.在四个不同长度的公共中文摘要数据集LCSTS(大规模中文短文本摘要数据集)、CNewSum(大规模中国新闻摘要数据集)、NLPCC2017和SFZY2020上的实验结果表明:本文方法对于长文本摘要生成具有显著优势,能够有效提高ROUGE-1、ROUGE-2、ROUGE-L值.