期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
融合多尺度交叉注意力和边缘感知的伪装目标检测
1
作者 郝子强 张庆宝 +2 位作者 赵世豪 王焯豪 詹伟达 《计算机工程与应用》 北大核心 2025年第10期228-237,共10页
针对当前伪装目标检测算法无法准确、完整地检测出目标对象和其边缘的问题,提出了一种融合多尺度交叉注意力和边缘感知的伪装目标检测网络(multi-scale cross attention and edge perception network,MAEP-Net)。利用Res2Net-50提取图... 针对当前伪装目标检测算法无法准确、完整地检测出目标对象和其边缘的问题,提出了一种融合多尺度交叉注意力和边缘感知的伪装目标检测网络(multi-scale cross attention and edge perception network,MAEP-Net)。利用Res2Net-50提取图像的原始特征,并采用融合了多尺度交叉注意力的特征金字塔结构从通道、空间两个维度挖掘目标位置信息和凸显伪装目标区域特征;使用定位模块对目标的大致位置进行准确定位;边缘感知模块抑制低级特征中背景的噪声,融合边缘特征以获取更多的边缘细节信息;细化模块通过注意力机制分别从前景和背景两个方向关注目标线索,利用边缘先验、语义先验、领域先验、区域先验知识进一步细化目标结构和边缘轮廓。在3个公开数据集上的实验表明,所提算法相较于12种主流算法在4个客观评价指标上均取得了最优表现,尤其是在COD10K数据集上所提算法的加权平均值F-measure和平均绝对误差(mean absolute error,MAE)分别达到0.797和0.031。由此可见,所提算法在COD任务上具有较好的检测效果。 展开更多
关键词 多尺度交叉注意力 边缘感知 伪装目标检测 特征金字塔结构
在线阅读 下载PDF
融合ViT与多尺度注意力的改进YOLOv8飞鸟识别算法
2
作者 张强 张灿智 +1 位作者 曹恒 员腾蛟 《科学技术与工程》 北大核心 2025年第19期8151-8157,共7页
针对飞鸟识别中存在密集目标识别不准确、小目标检测困难等问题,提出一种基于改进YOLOv8的飞鸟识别算法。首先,针对密集目标识别难度大的问题,采用多尺度线性注意力机制EfficientViT替换骨干网络,实现全局感受野和多尺度学习,提升模型... 针对飞鸟识别中存在密集目标识别不准确、小目标检测困难等问题,提出一种基于改进YOLOv8的飞鸟识别算法。首先,针对密集目标识别难度大的问题,采用多尺度线性注意力机制EfficientViT替换骨干网络,实现全局感受野和多尺度学习,提升模型性能和效率的同时提高密集目标识别效果。然后,针对小目标飞鸟检测困难、容易出现漏检的问题,引入高效多尺度注意力(efficient multi-scale attention,EMA)机制,通过通道重组实现跨维度聚合特征,从而更好地捕捉全局信息,实现多尺度特征融合,减少漏检概率。实验结果表明,改进模型在鸟类识别基准数据集CUB-200-2011和自制数据集birds28上的mAP50分别达到77.1%和88.4%,较原始YOLOv8模型分别提高了4.5和5.4个百分点,验证了改进模型的有效性。 展开更多
关键词 飞鸟识别 多尺度注意力 密集目标识别 YOLOv8 EfficientViT EMA
在线阅读 下载PDF
基于多尺度可变形注意力编码与多路径融合的未知说话人语音分离
3
作者 王春丽 刘素倩 陈善立 《信号处理》 北大核心 2025年第4期718-729,共12页
针对在含有噪声和混响的复杂环境中对未知说话人语音分离任务的研究,提出了一种基于多尺度可变形注意力编码与多路径融合的未知说话人语音分离模型。现有的针对未知说话人的语音分离模型是在纯净的实验环境条件下分析的模型性能,不符合... 针对在含有噪声和混响的复杂环境中对未知说话人语音分离任务的研究,提出了一种基于多尺度可变形注意力编码与多路径融合的未知说话人语音分离模型。现有的针对未知说话人的语音分离模型是在纯净的实验环境条件下分析的模型性能,不符合现实中复杂的背景环境需求。为使模型可以在现实应用复杂条件下灵活应对混合语音信号中的多变性与非平稳性,采用多尺度可变形注意力机制与Transformer编码器构成(Transformer Encoder Multi-Scale deformable attention,TEMDA)模块,利用多尺度可变形注意力机制的偏移层在不同位置上进行动态计算,扩展模型的感受野,同时使模型更有效地聚焦于重要的时间点,减少噪声和混响的影响。为了更好地获取上下文信息,在多路径融合策略中,通过在双路径模块的基础上增加通道间的Conformer组成三路径模块,用于提取多说话人之间的特征信息,这样的处理方式可以更好地融合单一说话人和多说话人之间的信息,提升语音分离性能。实验表明,所提出的模型分别在纯净和带噪声的Libri2Mix、Libri3Mix数据集上达到了显著的分离效果,并且在LRS2-2Mix数据集中模型可以更好地减少噪声和混响对语音分离的影响,尺度不变信噪比改善(Scale-Invariant Signal-to-Noise Ratio Improvement,SI-SNRi)和信号失真比改善(Signal-to-Distortion Ratio Improvement,SDRi)分别为14.7 dB和15.1 dB;在三个说话人数目中的估计精度为98.89%,提升了0.12%。 展开更多
关键词 未知说话人语音分离 多尺度可变形注意力编码策略 多路径融合 吸引子估计
在线阅读 下载PDF
结合多尺度注意力和动态构建的非均匀超图聚类模型 被引量:1
4
作者 朱峰冉 王慧颖 +2 位作者 林晓丽 李全鑫 庞俊 《计算机工程与应用》 北大核心 2025年第2期200-207,共8页
单个较大非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得同一簇内的节点更相似,而不同簇中的节点更不相似,具有广泛的应用场景。目前,最优的基于超图神经网络的非均匀超图聚类方法CIAH(co-cluster the interactions via at... 单个较大非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得同一簇内的节点更相似,而不同簇中的节点更不相似,具有广泛的应用场景。目前,最优的基于超图神经网络的非均匀超图聚类方法CIAH(co-cluster the interactions via attentive hypergraph neural network)虽然较好地学习了非均匀超图的关系信息,但仍存在两点不足:(1)对于局部关系信息的挖掘不足;(2)忽略了隐藏的高阶关系。因此,提出一种基于多尺度注意力和动态超图构建的非均匀超图聚类模型MADC(non-uniform hypergraph clustering combining multi-scale attention and dynamic construction)。一方面,使用多尺度注意力充分学习了超边中节点与节点之间的局部关系信息;另一方面,采用动态构建挖掘隐藏的高阶关系,进一步丰富了超图特征嵌入。真实数据集上的大量实验结果验证了MADC模型在非均匀超图聚类上的聚类准确率(accuracy,ACC)、标准互信息(normalized mutual information,NMI)和调整兰德指数(adjusted Rand index,ARI)均优于CIAH等所有Baseline方法。 展开更多
关键词 非均匀超图 超图聚类 超图神经网络 多尺度注意力
在线阅读 下载PDF
TalentDepth:基于多尺度注意力机制的复杂天气场景单目深度估计模型
5
作者 张航 卫守林 殷继彬 《计算机科学》 北大核心 2025年第S1期442-448,共7页
对于复杂天气场景图像模糊、低对比度和颜色失真所导致的深度信息预测不准的问题,以往的研究均以标准场景的深度图作为先验信息来对该类场景进行深度估计。然而,这一方式存在先验信息精度较低等问题。对此,提出一个基于多尺度注意力机... 对于复杂天气场景图像模糊、低对比度和颜色失真所导致的深度信息预测不准的问题,以往的研究均以标准场景的深度图作为先验信息来对该类场景进行深度估计。然而,这一方式存在先验信息精度较低等问题。对此,提出一个基于多尺度注意力机制的单目深度估计模型TalentDepth,以实现对复杂天气场景的预测。首先,在编码器中融合多尺度注意力机制,在减少计算成本的同时,保留每个通道的信息,提高特征提取的效率和能力。其次,针对图像深度不清晰的问题,基于几何一致性,提出深度区域细化(Depth Region Refinement,DSR)模块,过滤不准确的像素点,以提高深度信息的可靠性。最后,输入图像翻译模型所生成的复杂样本,并计算相应原始图像上的标准损失来指导模型的自监督训练。在NuScence,KITTI和KITTI-C这3个数据集上,相比于基线模型,所提模型对误差和精度均有优化。 展开更多
关键词 单目深度估计 自监督学习 多尺度注意力 知识提炼 深度学习
在线阅读 下载PDF
基于多尺度注意力融合的叶绿素a水质参数反演研究
6
作者 孙帮勇 巩凯杰 +1 位作者 于涛 别倩雯 《光谱学与光谱分析》 北大核心 2025年第4期1190-1200,共11页
水资源是生态环境核心要素之一,目前大量的水域被工业化污染或富营养化破坏,因此实时监测水质参数对于维护水体健康至关重要。传统水质监测多利用实地采样测量法或基于线性回归预测法,由于遥感图像与水质参数之间显著的非线性特征,传统... 水资源是生态环境核心要素之一,目前大量的水域被工业化污染或富营养化破坏,因此实时监测水质参数对于维护水体健康至关重要。传统水质监测多利用实地采样测量法或基于线性回归预测法,由于遥感图像与水质参数之间显著的非线性特征,传统方法费时费力且预测精度不高。深度学习方法在处理复杂非线性问题中表现出良好性能,已被多位学者应用到水质参数反演中。基于深度学习的水质反演模型仍存在解析遥感光谱图像特征不精确、模型泛化能力差等问题。提出一种基于多尺度注意力融合机制的水质反演网络模型,能够采用遥感光谱图像准确预测出叶绿素a等水质参数,为水域健康程度评价提供依据。该网络融合了先进的注意力机制和特征融合策略,通过结合CNN的局部特征学习优势和Transformer的全局特征提取能力,引入了DenseASPP模块来获取遥感图像的多尺度特征,并采用通道注意力解码器模块和池化融合模块来提取细节特征。通过融合不同尺度和层次的特征信息对叶绿素a浓度进行估计,获得了较高的反演精度和泛化性能。为验证所提出反演模型的性能,实验在Python3.7和PyTorch框架下对模型进行实现,并选择2021年1月至2022年12月的海洋遥感光谱图像和叶绿素a浓度数据进行网络训练。实验对所提出的方法与其他7种水质反演方法进行对比,客观指标所提出方法均达到了最好的性能,较对比方法中最好的在R2指标上提高了0.09,在RMSE、MAE、MAD指标上分别降低了11.99、0.089、0.029,在Evar指标上提高了0.098,在NSE指标上提高了0.041;在主观评价上,所提出方法获得的叶绿素a浓度更精确,误差更小,不同水域中表现的泛化能力更强。 展开更多
关键词 水质反演 叶绿素A 遥感光谱图像 多尺度注意力融合
在线阅读 下载PDF
融合多尺度特征注意力的双目立体匹配算法
7
作者 张嫡 李泽平 +1 位作者 赵勇 杨文帮 《计算机工程与设计》 北大核心 2025年第1期30-36,共7页
针对现有的立体匹配算法在反光、反射、纹理模糊、纹理复杂边缘等区域推理精度不高的问题,提出一种融合多尺度特征注意力的立体匹配网络。采用改进的金字塔池化模块,将金字塔池化结合U型架构,加强边缘区域有效特征信息的提取;在网络中... 针对现有的立体匹配算法在反光、反射、纹理模糊、纹理复杂边缘等区域推理精度不高的问题,提出一种融合多尺度特征注意力的立体匹配网络。采用改进的金字塔池化模块,将金字塔池化结合U型架构,加强边缘区域有效特征信息的提取;在网络中引入多尺度特征融合的注意力模块,融合多尺度代价体和注意力机制增强代价体中不同层次信息量,同时捕获在不同维度间的信息依赖关系,抑制代价体中无关信息;采用多阶段的视差精化得到最终的视差图。实验结果表明,MFANet预测的精度相比基准网络GwcNet在SceneFlow、KITTI 2012和KITTI 2015分别提高了18.8%、11.6%、12%。 展开更多
关键词 深度学习 立体匹配 双目视觉 特征提取 多尺度特征注意力 改进金字塔池化 视差优化
在线阅读 下载PDF
结合多尺度注意力和自训练的超图聚类方法
8
作者 刘志成 王慧颖 +4 位作者 林晓丽 朱峰冉 郭宇恒 闫炳鑫 庞俊 《小型微型计算机系统》 北大核心 2025年第9期2066-2074,共9页
单个较大的非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得簇内节点越相似越好,簇间节点越不相似越好,具有广泛的应用前景.目前最优的基于超图神经网络的非均匀超图聚类模型MADC(Non-uniform hypergraph clustering combin... 单个较大的非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得簇内节点越相似越好,簇间节点越不相似越好,具有广泛的应用前景.目前最优的基于超图神经网络的非均匀超图聚类模型MADC(Non-uniform hypergraph clustering combining multi-scale attention and dynamic construction)仍存在不足:超图特征嵌入的学习效率不高.针对这个问题,提出了一种基于多尺度注意力和自训练网络的非均匀超图聚类模型STHC(Self-Training non-uniform Hypergraph Clustering).STHC模型采用并行的多尺度注意力网络学习超图特征嵌入,以提高其学习效率.此外,该模型还构造自训练网络,联合优化超图特征嵌入和超图聚类结果,以进一步得到更好的超图聚类结果.STHC模型在真实数据集上的大量实验结果验证了其在非均匀超图聚类上的聚类准确率(Accuracy,ACC)、标准互信息(Normalized Mutual Information,NMI)和调整兰德指数(Adjusted Rand Index,ARI)均优于所有对比方法. 展开更多
关键词 非均匀超图 聚类 自训练网络 多尺度注意力
在线阅读 下载PDF
基于多尺度注意力和不确定性损失的两阶段左心房疤痕分割
9
作者 张鑫艳 唐振超 +1 位作者 李一夫 刘振宇 《计算机科学》 北大核心 2025年第6期264-273,共10页
心房颤动(AF)是临床上最常见的心律失常之一。左心房及其心肌梗死后疤痕区域的准确分割和面积评估,对于心肌梗死患者出现AF的早期诊断、治疗规划以及预后评估具有极其重要的临床意义。深度学习方法是进行左心房及其心肌梗死后疤痕区域... 心房颤动(AF)是临床上最常见的心律失常之一。左心房及其心肌梗死后疤痕区域的准确分割和面积评估,对于心肌梗死患者出现AF的早期诊断、治疗规划以及预后评估具有极其重要的临床意义。深度学习方法是进行左心房及其心肌梗死后疤痕区域自动分割的主流方向。但是由于心肌梗死后疤痕体积小且容易受到周围增强组织的影响,分割精度尚有待提高。为此,提出了一种基于多尺度注意力和不确定性损失的两阶段深度学习模型。一方面,在网络上采样之前引入多尺度注意力模块(MSAM),该模块能够编码丰富的多尺度语义信息并让模型更为关注重要的语义信息及空间信息。另一方面,引入不确定性损失(Uncertainty Loss)以增强模型对疤痕不确定性的建模能力。此外,还采用直方图匹配(HM)增强图像质量,提高网络的分割能力。将所提出的方法在验证集以及左心房和疤痕量化与分割挑战赛(LAScarQS++)验证平台上进行验证,实验结果均表明该方法分割的疤痕更加完整,分割精度也得到了提升。与nnU-Net相比,心肌梗死后疤痕分割骰子系数(Dice)提高了8.12%。 展开更多
关键词 心肌梗死后疤痕 深度学习 图像分割 不确定性损失 nnU-Net 多尺度注意力
在线阅读 下载PDF
基于多尺度注意力机制的无人机小目标检测算法 被引量:1
10
作者 冯迎宾 郭枭尊 晏佳华 《兵工学报》 北大核心 2025年第1期12-21,共10页
针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster ... 针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster Block_C2f,EF_C2f),替换YOLOv8网络中的C2f模块,提高网络对小目标特征的提取能力;在特征融合网络中增加P1检测层,并设计一种跨尺度特征融合结构(Bi-Path Aggregation Network,BPAN),融合小目标特征信息;增加一个微小目标检测头,使用SIoU Loss作为边界框损失函数,提升小目标检测精度和网络收敛速度。在公开数据集VisDrone2019上进行实验验证。验证结果表明:与YOLOv8s算法相比,新算法在检测精度上提升了6.9%、mAP50提升了9.1%,模型参数量减少了44.6%,检测速度为28帧/s,新算法在小目标检测领域具有一定的实用性。 展开更多
关键词 多尺度注意力机制 YOLOv8s算法 特征提取 尺度特征融合 小目标检测
在线阅读 下载PDF
融合多尺度注意力神经网络的港口起重装备故障时序数据预测方法 被引量:1
11
作者 雷鹏 谢敬玲 +4 位作者 许洪祖 焦锋 魏立明 张忠岩 吕成兴 《机电工程》 北大核心 2025年第2期277-286,共10页
近年来,深度神经网络在轴承时序预测领域得到了广泛应用。为了进一步提升港口起重装备滚动轴承时序模型预测的准确度,以青岛港门机为例对港口起重装备关键部位的滚动轴承时序预测进行了建模,提出了一种融合改进变分模态分解的多尺度注... 近年来,深度神经网络在轴承时序预测领域得到了广泛应用。为了进一步提升港口起重装备滚动轴承时序模型预测的准确度,以青岛港门机为例对港口起重装备关键部位的滚动轴承时序预测进行了建模,提出了一种融合改进变分模态分解的多尺度注意力机制港口装备故障时序数据预测方法。首先,采用了融合非线性策略与混沌映射的改进灰狼优化算法(IGWO),自适应地确定了变分模态分解(VMD)的模态数与惩罚因子;然后,将变分模态分解得到的本征模态函数进一步作为融合多尺度注意力神经网络(FMANN)模型的时序输入,进行了多尺度通道特征融合;最后,对各个本征模态函数的预测结果进行了融合,得到了最终预测结果。研究结果表明:FMANN模型在回转机构数据集上的均方根误差(RMSE)为0.001 12,平均绝对百分比误差(MAPE)为6.396 3%,决定系数为0.999 8;相比于其他预测模型,FMANN预测效果更加拟合实际数据。FMANN模型能够准确地预测设备轴承的时序振动,有望为未来实际工业生产提供一条新思路。 展开更多
关键词 滚动轴承 故障诊断 变分模态分解 注意力机制 灰狼优化算法 融合多尺度注意力神经网络 深度可分离卷积
在线阅读 下载PDF
联合可变形特征和多尺度注意力的结核杆菌图像检测
12
作者 周梦丽 钟铭恩 +3 位作者 谭佳威 袁彬淦 邓智颖 杨凯博 《中国生物医学工程学报》 北大核心 2025年第3期301-311,共11页
结核病是一种常见、多发且较为凶险的传染性疾病,目前主要采用痰涂片人工镜检。由于结核杆菌在显微场景下具有尺度小、菌体粘连和形态不规整等特点,易造成漏检和错检。为此,基于深度学习技术提出一种痰液显微图像结核杆菌的自动检测算法... 结核病是一种常见、多发且较为凶险的传染性疾病,目前主要采用痰涂片人工镜检。由于结核杆菌在显微场景下具有尺度小、菌体粘连和形态不规整等特点,易造成漏检和错检。为此,基于深度学习技术提出一种痰液显微图像结核杆菌的自动检测算法MTDet。首先,构建轻量化的基础特征提取网络,以全局注意的方式捕捉菌体堆积粘连时的空间关系和个体局部特征;其次,利用自主设计的可变形特征聚合模块DC2f和高效多尺度注意力EMA来重构特征,自适应结核杆菌的多种形态;最后,在检测头中增加高分辨率分支,提升模型对小目标的感知能力。在结核杆菌显微图像公开数据集Tuberculosis-phonecamera和ZNSM iDB上的实验结果表明:算法平均检测准确率分别为90.2%和87.9%,召回率分别为84.1%和83.2%,均超越了现有主流算法。此外,基于WHO的结核病诊断标准,针对220例临床样本的综合准确率为96.8%,其中假阳率为6.5%,假阴率为0%。本研究结果有望为结核病的辅助诊断带来帮助。 展开更多
关键词 结核杆菌检测 痰涂片图像 小目标 特征聚合 多尺度注意力
在线阅读 下载PDF
基于多尺度上下文注意力U-SegNet的遥感目标检测
13
作者 陈瑞霞 张善文 吴青娥 《电讯技术》 北大核心 2025年第8期1187-1195,共9页
针对遥感目标图像多样、目标较小且与周围环境对比度差,导致现有目标检测方法复杂度高、检测效果差、泛化能力弱,以及经典U-Net和U-SegNet忽略了不同目标尺度特征感受野差异等问题,提出了一种基于多尺度上下文注意力U-SegNet(Multi-scal... 针对遥感目标图像多样、目标较小且与周围环境对比度差,导致现有目标检测方法复杂度高、检测效果差、泛化能力弱,以及经典U-Net和U-SegNet忽略了不同目标尺度特征感受野差异等问题,提出了一种基于多尺度上下文注意力U-SegNet(Multi-scale Context Attention U-SegNet,MSCAUSNet)的遥感目标检测新模型。该模型由U-SegNet、多尺度特征融合(Multi-scale Feature Fusion,MSFF)和多尺度上下文注意力(Multi-scale Context Attention,MSCA)模块组成,采用MSCA代替U-SegNet中的跳跃连接以融合目标低层特征与高层特征,并通过MSFF和MSCA模块充分捕获多尺度上下文特征,从而显著提升遥感多尺度目标检测性能。在遥感目标图像数据集上的实验结果表明,该模型能够有效检测不同尺度遥感目标,较经典U-Net和U-SegNet的检测精度分别提高了7.94%和5.09%。该模型为遥感目标检测和识别系统提供了技术支持。 展开更多
关键词 遥感多尺度目标检测 多尺度上下文注意力U-SegNet 多尺度上下文注意力 多尺度特征融合
在线阅读 下载PDF
基于多尺度注意力和图神经网络的多模态医学实体识别研究
14
作者 韩普 刘森嶺 陈文祺 《数据采集与处理》 北大核心 2025年第4期922-933,共12页
随着信息技术的快速发展,医疗健康领域中文文本、图像等多模态数据呈现出了爆发式增长。多模态医学实体识别(Multi-modal medical entity recognition,MMER)是多模态信息抽取的关键环节,近期受到了极大关注。针对多模态医学实体识别任... 随着信息技术的快速发展,医疗健康领域中文文本、图像等多模态数据呈现出了爆发式增长。多模态医学实体识别(Multi-modal medical entity recognition,MMER)是多模态信息抽取的关键环节,近期受到了极大关注。针对多模态医学实体识别任务中存在图像细节信息损失和文本语义理解不足问题,提出一种基于多尺度注意力和图神经网络(Multi-scale attention and dependency parsing graph convolution,MADPG)的MMER模型。该模型一方面基于ResNet引入多尺度注意力机制,协同提取不同空间尺度融合的视觉特征,减少医学图像重要细节信息丢失,进而增强图像特征表示,补充文本语义信息;另一方面利用依存句法结构构建图神经网络,捕捉医学文本中词汇间复杂语法依赖关系,以丰富文本语义表达,促进图像文本特征深层次融合。实验表明,本文提出的模型在多模态中文医学数据集上F_(1)值达到95.12%,相较于主流的单模态和多模态实体识别模型性能得到了明显提升。 展开更多
关键词 多模态医学实体识别 多尺度注意力 图卷积神经网络 多模态融合 语义特征
在线阅读 下载PDF
结合混合卷积和多尺度注意力的视频异常检测算法 被引量:1
15
作者 杨大为 刘志权 王红霞 《液晶与显示》 CAS CSCD 北大核心 2024年第8期1128-1137,共10页
基于U-net风格的无监督视频异常检测模型有着较好的检测效果,但由于普通卷积运算使用固有的局部特性,使U-Net风格的编码器无法有效地提取全局上下文信息,并且使用简单的跳跃连接无法获得有效的特征信息,使用的L2损失函数是仅考虑了像素... 基于U-net风格的无监督视频异常检测模型有着较好的检测效果,但由于普通卷积运算使用固有的局部特性,使U-Net风格的编码器无法有效地提取全局上下文信息,并且使用简单的跳跃连接无法获得有效的特征信息,使用的L2损失函数是仅考虑了像素级别的差异而无法捕捉图像的结构特征。对此提出了结合混合卷积和多尺度注意力的视频异常检测算法,并加入结构相似性损失函数(SSIM)优化模型。具体来说,在编码器最后一层添加混合卷积模块,混合空间和位置的特征来提取全局上下文信息。在编码器和解码器之间的跳跃连接中添加多尺度注意力模块,使模型能提取更有价值的特征,实现有效的跳跃连接。使用参数约束结构相似性损失函数与L2损失函数的权重,从而更准确地优化模型。实验结果表明,所提算法在UCSD-Ped2和CUHK Avenue公开数据集上的AUC指标达到96.7%和86.1%,与改进前的模型相比提高了1.6%和1.4%,证明了所提模型的有效性。 展开更多
关键词 上下文信息 跳跃连接 混合卷积 多尺度注意力 结构相似性
在线阅读 下载PDF
融合多种注意力机制和Wise-IoUv3的水下目标检测算法
16
作者 肖振久 高凯歌 李士博 《广东海洋大学学报》 北大核心 2025年第2期109-117,共9页
【目的】针对水下目标图像存在成像模糊和复杂背景下检测精度低的问题,提出融合多种注意力机制和Wise-IoUv3的水下目标检测算法。【方法】首先,设计多尺度特征增强机制,在主干网络部分采用全维动态卷积(ODConv)替代部分卷积并引入高效... 【目的】针对水下目标图像存在成像模糊和复杂背景下检测精度低的问题,提出融合多种注意力机制和Wise-IoUv3的水下目标检测算法。【方法】首先,设计多尺度特征增强机制,在主干网络部分采用全维动态卷积(ODConv)替代部分卷积并引入高效的多尺度注意力机制(EMA),提升主干网络对模糊目标和小目标特征提取能力。其次,改进快速空间金字塔池化(SPPF)模块,增加平均池化分支补充空间信息,提升全局上下文感知能力并在两个分支融入轻量级BiFormer注意力机制,降低模型计算复杂度,增强对小目标检测性能。然后,在预测阶段,用Wise-IoUv3代替原损失函数,平衡不同质量图像模型训练结果。最后,用动态检测头(DynamicHead)替代原检测头,增强检测头的尺度感知、空间感知和任务感知能力,提高对象位置的识别准确性。【结果与结论】在RUOD和URPC数据集上实验结果表明,模型的检测精度、参数量和计算量较目前其他的主流模型表现良好,特别是与YOLOv8n算法相比,改进后算法在平均精度均值上提升3.6%和1.7%,尤其在包含大量小目标的类别(如海胆、扇贝)中表现更优;模型的参数量和计算量分别减少了0.26×10^(6)和0.4 GFLOPs。实验结果表明,该方法减少了在复杂情况下模糊目标和小目标漏检和误检情况,提高了检测性能,同时保持了模型的轻量性。 展开更多
关键词 水下目标检测 多尺度特征增强机制 多尺度注意力机制 全维动态卷积 Wise-IoUv3
在线阅读 下载PDF
融合动态损失与渐进多尺度注意力的视网膜血管分割网络
17
作者 李宗民 初天志 +1 位作者 杨超智 刘玉杰 《计算机工程与应用》 CSCD 北大核心 2024年第23期209-218,共10页
视网膜血管分割任务仍然存在许多挑战,例如眼底图像中生物学背景复杂、毛细血管细小且模糊以及特征难以得到充分利用。针对这些问题,提出了一种融合动态损失与渐进多尺度注意力的网络。其中渐进式特征提取策略可以在网络中逐步捕获对分... 视网膜血管分割任务仍然存在许多挑战,例如眼底图像中生物学背景复杂、毛细血管细小且模糊以及特征难以得到充分利用。针对这些问题,提出了一种融合动态损失与渐进多尺度注意力的网络。其中渐进式特征提取策略可以在网络中逐步捕获对分割有益的特征,并且保留更多细节。设计的多尺度通道注意力模块能够获得复杂的通道依赖关系并且抑制跳跃连接过程中的背景噪音,达到突出重要特征的目的。最后提出动态损失用来自适应调整深监督中各损失函数的权重,优化训练策略。所提出的方法在两个公开的数据集DRIVE和CHASE_DB1中进行了充分的验证,其中灵敏度分别达到0.838 9和0.846 8,准确率分别达到0.971 5和0.974 5,展现出了较好的分割性能。 展开更多
关键词 视网膜血管分割 渐进式特征提取 多尺度通道注意力 动态损失
在线阅读 下载PDF
基于多尺度注意力特征增强的异常流量检测方法 被引量:4
18
作者 杨宏宇 张豪豪 成翔 《通信学报》 EI CSCD 北大核心 2024年第11期88-105,共18页
针对现有网络异常流量检测方法存在特征冗余以及流量序列的时间依赖性,导致模型训练速度慢和检测性能不佳等不足,提出一种基于多尺度注意力特征增强的异常流量检测方法。首先,通过基于动态分组的特征选择算法从流量数据中选出最优特征... 针对现有网络异常流量检测方法存在特征冗余以及流量序列的时间依赖性,导致模型训练速度慢和检测性能不佳等不足,提出一种基于多尺度注意力特征增强的异常流量检测方法。首先,通过基于动态分组的特征选择算法从流量数据中选出最优特征集合。其次,使用密集卷积神经网络和多尺度注意力特征提取网络分别提取流量数据的局部和全局特征。最后,利用特征增强网络增强局部和全局特征的区分度和整体表达的有效性,并采用加权融合的方法进行特征融合,实现异常流量检测。实验结果表明,所提方法在CIC-IDS2017和CSECIC-IDS2018数据集上的F1分数分别提升0.17%~2.75%、0.43%~8.99%,具有良好的检测效果。 展开更多
关键词 异常流量检测 特征选择 多尺度注意力 特征增强网络
在线阅读 下载PDF
面向恶意代码检测的深度注意力网络架构
19
作者 李思聪 王飞 +1 位作者 魏子令 陈曙晖 《信息网络安全》 北大核心 2025年第8期1208-1222,共15页
针对恶意代码变种激增导致传统检测方法效能不足的问题,文章提出一种基于混合多尺度注意力网络的恶意代码分类架构MSA-ResNet。该架构通过双线性插值算法实现图像尺寸标准化,有效保留易混淆恶意代码家族的纹理特征,并结合动态数据增强... 针对恶意代码变种激增导致传统检测方法效能不足的问题,文章提出一种基于混合多尺度注意力网络的恶意代码分类架构MSA-ResNet。该架构通过双线性插值算法实现图像尺寸标准化,有效保留易混淆恶意代码家族的纹理特征,并结合动态数据增强策略优化输入多样性。在网络架构中,将多尺度注意力模块嵌入ResNet50残差块末端,构建跨尺度特征交互机制,使特征点关联距离缩短,注意力收敛速度提升。实验结果表明,架构在Malimg数据集上实现99.47%的准确率与99.46%的宏平均F1分数,较传统ResNet50架构提升1.95%,参数量仅增加15%。与现有最优方法相比,分类精度提升0.49%,且对Obfuscator.AD等复杂恶意代码变种检测有效。 展开更多
关键词 恶意代码可视化 卷积神经网络 多尺度注意力机制 图像尺寸归一化算法 特征融合
在线阅读 下载PDF
基于多尺度注意力机制的实时激光雷达点云语义的分割 被引量:1
20
作者 张晨 刘畅 +2 位作者 赵津 王广玮 许庆 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第4期591-601,共11页
为既能提高分割精度,又能克服车载计算资源局限,提出一种面向移动机器人平台的车载实时点云语义分割方法,并进行了综合实验。该方法采用基于投影的激光雷达语义分割方法,将三维点云投影到球面图像,并结合二维卷积进行分割。引入多头注... 为既能提高分割精度,又能克服车载计算资源局限,提出一种面向移动机器人平台的车载实时点云语义分割方法,并进行了综合实验。该方法采用基于投影的激光雷达语义分割方法,将三维点云投影到球面图像,并结合二维卷积进行分割。引入多头注意力机制(MHSA),实现轻量级语义分割模型,以一种全新的方式,将一种深度学习模型架构Transformer映射到卷积。将Transformer的MHSA迁移至卷积,以形成多尺度自注意力机制(MSSA)。结果表明:与当前主流方法CENet、FIDNet、PolarNet相比,本方法在NVIDIA JETSON AGX Xavier计算平台上保持了较高的分割精度(平均交并比为63.9%)及较高的检测速率(41帧/s),从而证明了其对移动机器人平台的适用性。 展开更多
关键词 移动机器人平台 激光雷达(LiDAR) 点云 多尺度注意力机制(MSSA) 语义分割方法TRANSFORMER 卷积神经网络
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部