期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
基于改进时域卷积网络与多头自注意力机制的间歇过程质量预测模型
1
作者 赵小强 柳勇勇 +1 位作者 惠永永 刘凯 《计算机应用》 北大核心 2025年第7期2245-2252,共8页
为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自... 为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自注意力机制(MHSA)的间歇过程质量预测模型(BMTCN-MHSA)。首先,将间歇过程的三维数据展开为二维矩阵形式,并对数据进行归一化处理,再引入奇异谱分析法(SSA)分解重构数据;其次,在时域卷积的残差部分融入BGN以降低网络模型在批量大小变化时的敏感度,引入Mish激活函数以提高模型的泛化能力,并利用多头自注意力机制对序列中不同位置的特征信息进行关联和权重分配,从而进一步提取序列中的关键特征信息和相互依赖关系,进而更好地捕捉间歇过程的动态特征;最后,使用青霉素仿真实验数据进行实验验证。实验结果表明,相较于TCN模型,BMTCN-MHSA模型的平均绝对误差(MAE)降低了56.86%,均方误差(MSE)降低了48.80%,而决定系数(R2)达到了99.48%,这表明BMTCN-MHSA模型提高了间歇过程质量预测的准确性。 展开更多
关键词 间歇过程 质量预测 奇异谱分析法 时域卷积网络 多头自注意力机制
在线阅读 下载PDF
结合卷积增强窗口注意力的双分支语音增强神经网络
2
作者 张晨辉 原之安 钱宇华 《计算机研究与发展》 北大核心 2025年第4期852-862,共11页
在复杂环境以及突发背景噪音条件下,语音增强任务具有极大的困难和挑战.主要原因是现有的语音增强方法未能有效捕获语谱图特征,尤其是局部信息.在过去的研究中,Transformer模型更专注于音频的全局信息,而忽略了局部信息的重要性.在音频... 在复杂环境以及突发背景噪音条件下,语音增强任务具有极大的困难和挑战.主要原因是现有的语音增强方法未能有效捕获语谱图特征,尤其是局部信息.在过去的研究中,Transformer模型更专注于音频的全局信息,而忽略了局部信息的重要性.在音频经过短时傅里叶变换(STFT)处理后,多数模型仅使用幅值信息,而忽略了相位信息,导致它们未能有效捕获语谱图特征,从而影响了语音增强的效果.基于此设计出一个带有卷积增强窗口注意力的双分支语音增强神经网络.该模型采用U-NET架构,通过双分支结构对音频的幅值和相位信息同时建模;在2个分支之间引入复值计算模块以实现信息交互;在编码器层和解码器层之间的跳跃连接部分采用卷积增强窗口注意力模块,该模块执行基于非重叠窗口的自注意力操作,在捕获局部上下文信息的同时显著降低了语音增强模型的计算复杂度.该模型在公开的Voicebank-Demand数据集上进行测试,与基线模型DCUNET 16和DCUNET20相比,在客观语音质量评估指标PESQ(perceptual evaluation of speech quality)分别提高了0.51和0.47.除了PESQ指标外,其他指标也都有显著的提升.相较于现有的各类语音增强模型,该模型在各项指标上均处于领先水平,尤其是在PESQ得分方面的提升更为显著. 展开更多
关键词 语音增强 双分支网络 语谱图特征 卷积增强窗口注意力 全局信息 局部信息
在线阅读 下载PDF
融合高效卷积注意力的时域卷积网络短期负荷预测模型
3
作者 孙东磊 李文升 +1 位作者 梁露 张智晟 《山东科技大学学报(自然科学版)》 北大核心 2025年第5期83-90,共8页
为避免时域卷积网络中膨胀卷积结构导致的负荷信息不连续现象,进一步提升预测模型对重要负荷特征的提取能力,本研究提出一种融合高效卷积注意力模块的混合膨胀卷积改进时域卷积网络(ECBAM-HTCN)的短期负荷预测模型。该模型以具备并行计... 为避免时域卷积网络中膨胀卷积结构导致的负荷信息不连续现象,进一步提升预测模型对重要负荷特征的提取能力,本研究提出一种融合高效卷积注意力模块的混合膨胀卷积改进时域卷积网络(ECBAM-HTCN)的短期负荷预测模型。该模型以具备并行计算能力的时域卷积网络为基础学习负荷数据特征,通过构建混合膨胀卷积层改进时域卷积网络残差块,利用不同膨胀系数的卷积自适应地捕获不同距离下全部负荷数据,避免信息不连续;同时,引入能够自适应调整卷积核大小的一维卷积改进传统卷积注意力模块,高效捕获负荷数据空间和通道两个维度的重要信息。基于实际电网负荷数据仿真实验表明,在短期负荷预测任务中,所提出的ECBAM-HTCN模型具有较高的预测精度和较好的稳定性。 展开更多
关键词 短期负荷预测 时域卷积网络 混合膨胀卷积 高效卷积注意力模块
在线阅读 下载PDF
基于多尺度注意力的冠脉造影图像血管增强CNN模型
4
作者 周鹏 汪光普 +3 位作者 高慧 秦泽伟 王硕 余辉 《中国生物医学工程学报》 北大核心 2025年第1期43-51,共9页
冠状动脉造影记录着血管随血液流动显影的动态过程。受心脏运动干扰,可能导致显影图像质量差,严重影响医生的诊断,同时不利于冠心病智能辅助诊断。本研究提出了一种基于卷积神经网络(CNN)的多尺度注意力冠脉造影图像血管增强网络。它由... 冠状动脉造影记录着血管随血液流动显影的动态过程。受心脏运动干扰,可能导致显影图像质量差,严重影响医生的诊断,同时不利于冠心病智能辅助诊断。本研究提出了一种基于卷积神经网络(CNN)的多尺度注意力冠脉造影图像血管增强网络。它由多尺度注意力模块(MAB)和尾部大核注意力模块(LKAT)组成。MAB由多尺度大核注意力块(MLKA)和门控空间注意力块(GSAB)两部分组成,模块不仅能够提取更多局部和全局的血管信息,而且也避免了栅格效应。LKAT具有聚合长范围信息的能力,提高了重构血管特征的表征能力,从而提升冠脉造影图像的重建质量。实验中2 666张冠脉数据集由医学专家人工标注,得到的血管分割标签作为掩膜,叠加到经高斯滤波预处理后的图像上作为冠脉增强标签。与现有的先进方法比较,本研究方法能够完整的重建冠脉造影图像,峰值信噪比(PSNR)和结构相似性(SSIM)分别达到了34.880 1和0.973 2。并且增强后的分割结果,Dice和IoU分别达到了0.851 4和0.741 3,Acc和Recall分别达到了98.55%和89.05%。所提出的方法有效实现了冠脉血管造影图像的智能增强,同时也有利于冠心病智能辅助诊断的后续处理。 展开更多
关键词 冠脉血管增强 卷积神经网络 多尺度注意力 冠状动脉造影
在线阅读 下载PDF
自适应卷积注意力与掩码结构协同的显著目标检测
5
作者 朱磊 袁金垚 +1 位作者 王文武 蔡小嫚 《电子与信息学报》 北大核心 2025年第1期260-270,共11页
显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点... 显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点的密集预测方式以获取像素显著值,然而该方式不符合基于人类视觉系统的场景解析机制,即人眼通常对语义区域进行整体分析而非关注像素级信息;(2)增强上下文信息关联在SOD任务中受到广泛关注,但通过Transformer主干结构获取长程关联特征不一定具有优势。SOD应更关注目标在适当区域内其中心-邻域差异性而非全局长程依赖。针对上述问题,该文提出一种新的显著目标检测模型,将CNN形式的自适应注意力和掩码注意力集成到网络中,以提高显著目标检测的性能。该算法设计了基于掩码感知的解码模块,通过将交叉注意力限制在预测的掩码区域来感知图像特征,有助于网络更好地聚焦于显著目标的整体区域。同时,该文设计了基于卷积注意力的上下文特征增强模块,与Transformer逐层建立长程关系不同,该模块仅捕获最高层特征中的适当上下文关联,避免引入无关的全局信息。该文在4个广泛使用的数据集上进行了实验评估,结果表明,该文提出的方法在不同场景下均取得了显著的性能提升,具有良好的泛化能力和稳定性。 展开更多
关键词 显著目标检测 卷积神经网络形式的自适应注意力 掩码注意力 特征增强
在线阅读 下载PDF
基于Ghost卷积与自适应注意力的点云分类 被引量:1
6
作者 舒密 王占刚 《现代电子技术》 北大核心 2025年第6期106-112,共7页
点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,... 点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,提出一种基于点云Transformer的轻量级特征增强融合分类网络EFF-LPCT。EFF-LPCT使用一维化Ghost卷积对原始网络进行重构,以降低计算复杂度和内存要求;引入自适应支路权重,以实现注意力层级间的多尺度特征融合;利用多个通道注意力模块增强特征的通道交互信息,以提高模型分类效果。在ModelNet40数据集进行的实验结果表明,EFF-LPCT在达到93.3%高精度的同时,相较于点云Transformer减少了1.11 GFLOPs的浮点计算量和0.86×10^(6)的参数量。 展开更多
关键词 点云分类 Transformer网络 Ghost卷积 特征增强融合模块 ECA通道注意力 特征学习
在线阅读 下载PDF
一种基于时序注意力动态卷积的油气井产量预测方法
7
作者 杨晨 彭小龙 +3 位作者 朱苏阳 王超文 官文洁 向东流 《油气藏评价与开发》 北大核心 2025年第6期1046-1055,共10页
目前机器学习对油气井产量预测效果不佳的原因在于常规方法过度依赖历史产量数据特征,使得预测结果更多地表现为对历史信息的重组,而难以预测新的趋势。这些方法忽略了其他重要的时序变量,如油气井的开发阶段、压力和产水等对产量的影... 目前机器学习对油气井产量预测效果不佳的原因在于常规方法过度依赖历史产量数据特征,使得预测结果更多地表现为对历史信息的重组,而难以预测新的趋势。这些方法忽略了其他重要的时序变量,如油气井的开发阶段、压力和产水等对产量的影响。为了解决这些问题,研究提出了压力、产水和产量的关联对策,并建立了一种基于时序注意力动态卷积神经网络的油气井产量预测方法,该方法以时域卷积神经网络为基础模型,引入了多头注意力和动态卷积机制,从而捕捉输入特征序列中不同时间步之间的长期依赖关系,并为每个时间步分配不同的权重。动态卷积模块可以根据时序注意力模块的输出,动态地生成卷积核参数,从而适应不同生产阶段的输入特征。通过安岳采气作业区多井真实复杂案例的验证,展示了基于时序注意力动态卷积的油气井产量预测模型的优越性。研究表明,所提出的模型在面对随机选取的4口井时表现出更好的预测效果。进一步通过对注意力权重和动态卷积权重的可视化分析,发现该模型能够根据不同开发阶段动态调整卷积核权重,特别是针对气井的初始阶段、过渡阶段和衰退阶段。通过结合开发阶段的压力、产水和产量关系,时序注意力动态卷积神经网络模型能自适应调整其结构和参数,从而实现对油气井产量的精准预测。 展开更多
关键词 油气井产量预测 时域卷积神经网络 多头注意力 动态卷积 自适应
在线阅读 下载PDF
基于特征融合的注意力增强卷积神经网络的航空发动机滚动轴承故障诊断方法 被引量:16
8
作者 李泽东 李志农 +2 位作者 陶俊勇 毛清华 张旭辉 《兵工学报》 EI CAS CSCD 北大核心 2022年第12期3228-3239,共12页
针对现有基于深度卷积神经网络的故障诊断方法只考虑对信息局部特征的提取、忽视全局信息的不足,将可以把握全局信息的注意力机制融入卷积层,使得注意力机制参数和卷积层参数参与网络的训练,提出一种注意力增强卷积神经网络的机械故障... 针对现有基于深度卷积神经网络的故障诊断方法只考虑对信息局部特征的提取、忽视全局信息的不足,将可以把握全局信息的注意力机制融入卷积层,使得注意力机制参数和卷积层参数参与网络的训练,提出一种注意力增强卷积神经网络的机械故障诊断方法。通过经验模态分解、变分模态分解和小波包分解的方法提取滚动轴承振动信号的高维特征模量;将特征模量组成多通道样本输入到注意力增强卷积神经网络中进行训练,利用网络对特征模量自适应地融合和选择,从而挖掘特征模量的隐式特征;使用Softmax分类器进行分类识别;通过训练好的网络对高转速下的滚动轴承进行故障诊断;利用不同信噪比的信号对所提方法进行测试,以验证网络的泛化能力和故障诊断效果。实验结果表明:该方法能准确、有效地对航空发动机滚动轴承不同故障的损伤程度进行分类识别。 展开更多
关键词 注意力增强卷积 深度卷积神经网络 特征融合 航空发动机滚动轴承 故障诊断
在线阅读 下载PDF
基于残差网络和深度可分离卷积增强自注意力机制的窃电识别 被引量:7
9
作者 段志尚 冉懿 +3 位作者 吕笃良 祁杰 钟佳晨 袁培森 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期193-204,共12页
窃电行为严重危害着电力设备和人身安全,并造成重大经济损失.对窃电行为实现准确识别是供电企业降损增效的一项重要工作.在残差网络(residual network, ResNet)结构的基础上,将二维卷积神经网络与深度可分离卷积增强的自注意力(depthwis... 窃电行为严重危害着电力设备和人身安全,并造成重大经济损失.对窃电行为实现准确识别是供电企业降损增效的一项重要工作.在残差网络(residual network, ResNet)结构的基础上,将二维卷积神经网络与深度可分离卷积增强的自注意力(depthwise separable convolution enhanced self attention,DSCAttention)机制相结合并构建模型,用于提升窃电用户的正确分类.此外,由于窃电数据常存在缺失值、异常值和正负样本不平衡的问题,故采用补零法、分位数变换和分层拆分法对以上问题分别处理.在真实窃电数据集上进行了大量实验,实验结果表明,所提模型的AUC指标达到了91.92%, MAP@100指标达到了98.58%, MAP@200指标达到了96.77%.与其他窃电分类模型相比,所提模型在窃电分类任务上亦有很好的表现,可以在窃电智能化识别中推广使用. 展开更多
关键词 残差网络 卷积增强 注意力机制 深度可分离卷积 窃电识别
在线阅读 下载PDF
基于双通道卷积注意力网络的语音增强方法 被引量:2
10
作者 李辉 景浩 +3 位作者 严康华 邹波蓉 侯庆华 武会斌 《河南理工大学学报(自然科学版)》 CAS 北大核心 2022年第5期127-136,共10页
传统的单通道网络模型因表征能力有限,无法充分提取语音深层特征,导致模型的语音增强效果不明显。鉴于此,提出一种双通道卷积注意力网络的语音增强方法。首先,使用卷积神经网络和长短时记忆网络构建并行的双通道学习模块,结合两种不同... 传统的单通道网络模型因表征能力有限,无法充分提取语音深层特征,导致模型的语音增强效果不明显。鉴于此,提出一种双通道卷积注意力网络的语音增强方法。首先,使用卷积神经网络和长短时记忆网络构建并行的双通道学习模块,结合两种不同神经网络的优势,充分挖掘语音的深层特征;其次,在两个通道中分别添加注意力模块,依照关注度对通道的输出特征进行加权,达到强调有益信息的目的;最后,将两个通道的输出进行融合得到增强特征。结果表明,在低信噪比和非平稳噪声环境中,包含双通道结构和注意力模块的模型,其增强效果明显优于其他对比模型,有效提高了增强语音的质量和可懂度,验证了所提模型的可行性。 展开更多
关键词 语音增强 卷积神经网络 长短时记忆网络 双通道学习模块 注意力模块
在线阅读 下载PDF
综合多尺度信息和注意力机制的水下图像增强 被引量:3
11
作者 夏晓华 钟预全 +3 位作者 胡鹏 姚运仕 耿继光 张良奇 《光学精密工程》 EI CAS CSCD 北大核心 2024年第10期1582-1594,共13页
针对水下图像由于水的散射和吸收而存在颜色失真和细节丢失等问题,提出了一种综合多尺度信息和注意力机制的生成对抗网络模型来增强水下图像。首先,为了充分利用和增强图像的局部信息和全局信息,使用局部编码器和全局编码器分别提取图... 针对水下图像由于水的散射和吸收而存在颜色失真和细节丢失等问题,提出了一种综合多尺度信息和注意力机制的生成对抗网络模型来增强水下图像。首先,为了充分利用和增强图像的局部信息和全局信息,使用局部编码器和全局编码器分别提取图像的局部特征和全局特征,并互相融合以实现互补性。接着,设计多尺度混合卷积来捕捉多尺度信息,增加网络对不同尺度特征的适应性。然后,利用注意力机制增加特征提取的准确性,加强网络对高价值特征的关注度。最后,重复使用多尺度混合卷积和注意力机制进一步细化特征后,逐步上采样得到增强图像。与六种经典和最新的方法相比,提出的模型不仅在主观评价中取得了最好的视觉感受,而且在整个测试集上,峰值信噪比(PSNR)、结构相似指数(SSIM)、水下图像质量指标(UIQM)和自然图像质量(NIQE)四种客观评价指标分别取得了22.499,0.789,2.911和4.175的平均分数,均优于六种对比方法,较对比方法中的最优值分别提升0.353,0.002,0.025和0.307,证明提出的模型不仅能够矫正图像颜色失真,而且在恢复图像细节、增加图像对比度和清晰度等方面均有较好的表现,具有良好的应用前景。 展开更多
关键词 水下图像增强 生成对抗网络 编码器 多尺度混合卷积 注意力机制
在线阅读 下载PDF
基于汇聚CNN和注意力增强网络的遮挡人脸检测方法 被引量:2
12
作者 项丽萍 杨红菊 《数据采集与处理》 CSCD 北大核心 2021年第1期95-102,共8页
针对现实场景中遮挡人脸检测精度低的问题,提出了一种基于汇聚CNN和注意力增强网络的遮挡人脸检测方法。首先,在主网络的多层原始特征图上,通过有监督学习的方法增强原始特征图中人脸可见部分的响应值。然后,将多个增强特征图组合成附... 针对现实场景中遮挡人脸检测精度低的问题,提出了一种基于汇聚CNN和注意力增强网络的遮挡人脸检测方法。首先,在主网络的多层原始特征图上,通过有监督学习的方法增强原始特征图中人脸可见部分的响应值。然后,将多个增强特征图组合成附加增强网络与主网络汇聚设置,以加快对多尺度遮挡人脸的检测速度。最后,将有监督信息分散到各个尺寸的特征图上进行监督学习,为不同尺寸的特征图设置了基于锚框尺寸的损失函数。在WIDER FACE和MAFA数据集上的实验结果表明,该方法的检测精度高于当前主流人脸检测方法。 展开更多
关键词 遮挡人脸检测 卷积神经网络 注意力增强网络 有监督学习 多尺度
在线阅读 下载PDF
结合混合注意力的双判别生成对抗网络 被引量:1
13
作者 王磊 杨军 +1 位作者 张驰宇 代在燕 《计算机工程与应用》 CSCD 北大核心 2024年第7期212-221,共10页
图像生成任务中,如何提升生成图片的质量是一个关键问题。当前,生成对抗网络采用的多层卷积结构存在局部性归纳偏置的问题,无法准确聚焦关键信息,导致图像特征丢失严重,生成图像效果较差。为此,提出了结合混合注意力的双判别生成对抗网... 图像生成任务中,如何提升生成图片的质量是一个关键问题。当前,生成对抗网络采用的多层卷积结构存在局部性归纳偏置的问题,无法准确聚焦关键信息,导致图像特征丢失严重,生成图像效果较差。为此,提出了结合混合注意力的双判别生成对抗网络(DDMA-GAN)。设计了一种混合注意力机制,利用通道注意力和空间注意力模块,从两个维度充分捕获图像特征信息;为解决单判别器存在判别误差的问题,提出一种双判别器结构,使用融合系数将判定结果融合,使回传参数更具客观性,并嵌入数据增强模块,进一步提升模型鲁棒性;采用铰链损失作为模型损失函数,最大化真假样本间的距离,明确决策边界。模型在公开数据集LSUN和CelebA上进行验证,实验结果表明,DDMA-GAN生成的图像更加真实,纹理细节更加丰富,其FID和MMD值均显著降低且优于其他常见模型,证明了模型的有效性。 展开更多
关键词 图像生成 卷积神经网络 混合注意力 双判别器 数据增强 生成对抗网络
在线阅读 下载PDF
基于多头注意力机制和TCN-BiLSTM的IGBT剩余寿命预测方法
14
作者 田源 高树国 +2 位作者 邢超 朱瑞敏 姜士哲 《电气工程学报》 北大核心 2025年第3期69-77,共9页
针对电力电子设备精准运维和半导体功率器件的态势感知需求,提出一种基于多头注意力机制(Multi-head attention mechanism,MA)和时域卷积网络(Temporal convolutional network,TCN)-双向长短时记忆(Bidirectional long short-term memor... 针对电力电子设备精准运维和半导体功率器件的态势感知需求,提出一种基于多头注意力机制(Multi-head attention mechanism,MA)和时域卷积网络(Temporal convolutional network,TCN)-双向长短时记忆(Bidirectional long short-term memory,BiLSTM)网络融合的IGBT剩余寿命预测方法。首先,基于IGBT封装模块老化机理的深入分析,设计并搭建加速老化试验平台,通过控制功率循环过程中的结温波动,施加电流加速IGBT模块的老化进程,采用高精度数据采集系统获取特征参量集-射极饱和压降Vce(sat)老化数据。其次,以TCN模型为基础,引入MA和BiLSTM神经网络构建预测模型,对IGBT劣化特征序列进行预测验证。结果表明,在相同条件下,所提模型相对于传统时序预测模型,在不显著增加模型复杂度和计算负担的情况下,具有更高的精度,充分验证了该模型在工程实践中应用于IGBT剩余寿命在线预测的可行性与高效性。 展开更多
关键词 IGBT 时域卷积网络 双向长短时记忆网络 多头注意力机制 老化预测
在线阅读 下载PDF
基于LPI-U-Net的端到端时域低截获概率雷达信号增强
15
作者 程晨 孙智 +1 位作者 孙本迪 崔国龙 《电波科学学报》 北大核心 2025年第2期201-211,共11页
低截获概率(low probability of intercept,LPI)雷达信号凭借其卓越的抗截获能力,在现代电子战中得到了广泛应用。但LPI雷达信号的低峰值功率使其极易被加性白高斯噪声(additive white Gaussian noise,AWGN)淹没,导致信噪比(signal-to-n... 低截获概率(low probability of intercept,LPI)雷达信号凭借其卓越的抗截获能力,在现代电子战中得到了广泛应用。但LPI雷达信号的低峰值功率使其极易被加性白高斯噪声(additive white Gaussian noise,AWGN)淹没,导致信噪比(signal-to-noise ratio,SNR)较低,给信号的检测和识别带来了极大的挑战。为了从AWGN背景中提取原始LPI雷达信号,本文提出了一种名为LPI-U-Net的深度神经网络(deep neural network,DNN),用于端到端的时域LPI雷达信号增强。该网络由特征提取模块(feature extract module,FEM)、特征聚焦模块(feature focus module,FFM)和信号恢复模块(signal recover module,SRM)组成。首先FEM通过卷积操作提取信号的特征,然后FFM利用卷积和通道间注意力进一步关注对信号增强任务有利的特征,最后SRM利用反卷积操作从特征中重构信号,从而完成LPI雷达信号增强。仿真实验表明LPI-U-Net在低SNR下的LPI雷达信号增强性能优于传统信号处理中典型的降噪方法,验证了其可行性和有效性。 展开更多
关键词 低截获概率(LPI)雷达信号增强 LPI-U-Net 深度学习 卷积神经网络 通道间注意力
在线阅读 下载PDF
面向语音增强的双复数卷积注意聚合递归网络 被引量:6
16
作者 余本年 詹永照 +2 位作者 毛启容 董文龙 刘洪麟 《计算机应用》 CSCD 北大核心 2023年第10期3217-3224,共8页
针对现有的语音增强方法对语谱图特征关联信息表达有限和去噪效果不理想的问题,提出一种双复数卷积注意聚合递归网络(DCCARN)的语音增强方法。首先,建立双复数卷积网络,对短时傅里叶变换后的语谱图特征进行两分支信息编码;其次,将两分... 针对现有的语音增强方法对语谱图特征关联信息表达有限和去噪效果不理想的问题,提出一种双复数卷积注意聚合递归网络(DCCARN)的语音增强方法。首先,建立双复数卷积网络,对短时傅里叶变换后的语谱图特征进行两分支信息编码;其次,将两分支中编码分别使用特征块间和特征块内注意力机制对不同的语音特征信息进行重标注;再次,使用长短期记忆(LSTM)网络处理长时间序列信息,并用两解码器还原语谱图特征并聚合这些特征;最后,经短时逆傅里叶变换生成目标语音波形,以达到抑制噪声的目的。在公开数据集VBD(Voice Bank+DMAND)和加噪的TIMIT数据集上进行的实验的结果表明,与相位感知的深度复数卷积递归网络(DCCRN)相比,DCCARN在客观语音感知质量指标(PESQ)上分别提升了0.150和0.077~0.087。这验证了所提方法能更准确地捕获语谱图特征的关联信息,更有效地抑制噪声,并提高语音的清晰度。 展开更多
关键词 语音增强 注意力机制 复数卷积网络 编码 长短期记忆网络
在线阅读 下载PDF
基于残差时域注意力神经网络的交通模式识别算法 被引量:4
17
作者 刘世泽 朱奕达 +4 位作者 陈润泽 罗海勇 赵方 孙艺 王宝会 《计算机应用》 CSCD 北大核心 2021年第6期1557-1565,共9页
交通模式识别是用户行为识别中的一个重要分支,其目的是对用户所处的交通模式进行准确判断。针对现代智慧城市交通系统对在移动设备环境下精准感知用户交通模式的需求,提出了一种基于残差时域注意力神经网络的交通模式识别算法。首先,... 交通模式识别是用户行为识别中的一个重要分支,其目的是对用户所处的交通模式进行准确判断。针对现代智慧城市交通系统对在移动设备环境下精准感知用户交通模式的需求,提出了一种基于残差时域注意力神经网络的交通模式识别算法。首先,通过具有较强局部特征提取能力的残差网络提取传感器时序中的局部特征;然后,采用基于通道的注意力机制对不同传感器特征进行重校准,并针对不同传感器的数据异构性进行注意力重校准;最后,利用具有更广感受野的时域卷积网络(TCN)提取传感器时序中的全局特征。采用数据丰富度较高的宏达通讯(HTC)交通模式识别数据集来对已有的交通模式识别算法和所提出的残差时域注意力模型进行评估,实验结果表明,所提出的残差时域注意力模型在对现代移动嵌入式设备的计算开销友好的前提下具有高达96.07%的准确率,且对单一类别均具有高于90%的召回率与精确率,验证了该模型的准确性与鲁棒性。所提模型可以作为一种支持移动智能终端运算的交通模式识别应用于智能交通出行、智慧城市等领域。 展开更多
关键词 时域卷积网络 交通模式识别 残差网络 注意力机制 深度学习
在线阅读 下载PDF
基于深度卷积网络的电力设施遥感图像融合增强模型
18
作者 周仿荣 王一帆 +4 位作者 马仪 文刚 王国芳 马御棠 耿浩 《计算机应用》 CSCD 北大核心 2024年第S2期212-216,共5页
针对电力设施安全监测及应急管理对于高时空分辨率遥感图像需求,提出一种基于深度卷积网络的电力设施遥感图像融合增强模型。首先,设计包含编码器、残差注意力机制(RA)模块、置换注意力机制模块和解码器的深度卷积网络;其次,改进双层卷... 针对电力设施安全监测及应急管理对于高时空分辨率遥感图像需求,提出一种基于深度卷积网络的电力设施遥感图像融合增强模型。首先,设计包含编码器、残差注意力机制(RA)模块、置换注意力机制模块和解码器的深度卷积网络;其次,改进双层卷积与融合通道注意力机制残差模块,以提高网络对于图像细节及关键特征的关注度,并增强网络的特征提取能力;再次,改进多通道置换注意力模块,使得网络能够更加关注图像细节,从而提升高分辨图像融合重建的性能;最后,改进深度学习网络的损失函数组成,采用由内容损失以及视觉损失组成的复合损失函数,从而提高模型的训练效果。实验结果表明,所提模型的图像融合重建效果明显优于其他融合模型,预测图像在细节纹理上更接近真实图像,与多级特征补偿网络(MFCNET)模型相比,所提模型的重建图像的相关系数(CC)提升了1.6%,结构相似性指数(SSIM)提升了18.4%。可见,所提模型为遥感图像处理,特别是小目标遥感图像高分辨重建提供了基础。 展开更多
关键词 遥感图像 深度卷积网络 融合增强 电力设施 注意力机制
在线阅读 下载PDF
基于时域全卷积网络的语音增强 被引量:7
19
作者 李文志 屈晓旭 《舰船科学技术》 北大核心 2022年第15期139-144,共6页
目前基于深度学习的语音增强方法一般是通过在频域中对语音信号幅度谱进行处理,相位信息受到损失。针对这一问题,提出一种基于时域全卷积网络的语音增强方法。该方法通过设计全卷积神经网络在时域中对语音信号进行处理,保留了信号的原... 目前基于深度学习的语音增强方法一般是通过在频域中对语音信号幅度谱进行处理,相位信息受到损失。针对这一问题,提出一种基于时域全卷积网络的语音增强方法。该方法通过设计全卷积神经网络在时域中对语音信号进行处理,保留了信号的原始相位信息,以含噪语音和纯净语音作为网络的输入和输出,建立时域上的非线性关系,实现以端到端的方式进行语音增强。通过仿真实验表明,提出的基于时域全卷积神络语音增强方法在低信噪比的情况下,能够有效地提高语音质量。 展开更多
关键词 语音增强 时域信号 深度学习 卷积神经网络 卷积网络
在线阅读 下载PDF
改进通道注意力机制的时域水声信号识别网络
20
作者 杨基睿 鄢社锋 +1 位作者 曾迪 杨斌斌 《信号处理》 CSCD 北大核心 2023年第6期1025-1035,共11页
为了提高时域水声信号识别网络的性能,本文在改进通道注意力机制的基础上提出了一种识别时域信号的卷积神经网络。该网络分别在原始时域信号和时域重构序列中提取特征,并在训练过程中随机丢弃输入中的数据点以防止网络训练的过拟合。同... 为了提高时域水声信号识别网络的性能,本文在改进通道注意力机制的基础上提出了一种识别时域信号的卷积神经网络。该网络分别在原始时域信号和时域重构序列中提取特征,并在训练过程中随机丢弃输入中的数据点以防止网络训练的过拟合。同时,本文使用由多个卷积层或残差模块构造的多尺度卷积模块提取不同频率成分下的信号特征。针对时域信号特点,本文在通道注意力机制中分别引入样本特征通道能量信息,样本特征通道幅值信息以及样本特征通道与样本整体间的相关性求解特征通道权值,增强特征中的有效成分。最后,在损失函数中添加分类器权值范数的正则项,突出网络提取的有效特征。在ShipsEar和DeepShip数据库下的实验结果表明,当训练数据和测试数据具有相似分布时,本文改进的卷积神经网络可对时域目标信号进行有效识别。 展开更多
关键词 水声目标识别 时域信号识别 卷积神经网络 注意力机制
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部