期刊文献+
共找到13,514篇文章
< 1 2 250 >
每页显示 20 50 100
融合稀疏图注意力的多元时间序列异常检测方法 被引量:1
1
作者 衡红军 代栋炜 《计算机工程与设计》 北大核心 2025年第3期841-849,共9页
为解决时序数据中时空依赖关系不明确而导致多元时间序列异常检测效果较差的问题,提出一种基于稀疏图注意力网络的异常检测模型PSGAT-AD(ProbSparse graph attention networks anomaly detection)。采用卷积神经网络(convolutional neur... 为解决时序数据中时空依赖关系不明确而导致多元时间序列异常检测效果较差的问题,提出一种基于稀疏图注意力网络的异常检测模型PSGAT-AD(ProbSparse graph attention networks anomaly detection)。采用卷积神经网络(convolutional neural networks,CNN)提取时间戳上下文信息并使用全局时间戳编码和Transformer位置编码增强序列之间的联系。利用稀疏自注意力关注重要的时间戳与特征,通过自注意力蒸馏(self-attention distillation)降低输入规模,使重要的特征更加突出,以学习时间和特征两个维度的复杂依赖关系,提升表示学习质量。通过构建基于预测和重构的综合损失函数,对模型参数进行优化。将综合损失误差作为异常得分实现异常判定。实验结果表明,PSGAT-AD模型在4个公开数据集上的F1得分提升1.47%~6.52%。 展开更多
关键词 异常检测 多元时间序列 注意力网络 时间戳编码 稀疏自注意力 注意力蒸馏 综合损失误差
在线阅读 下载PDF
基于注意力的多尺度残差U-Net的海洋中尺度涡检测 被引量:2
2
作者 王丽娜 孙阳 +2 位作者 张红春 王旭东 董昌明 《海洋与湖沼》 北大核心 2025年第1期64-76,共13页
海洋中尺度涡是一类重要的海洋现象,其特征是海洋中的螺旋运动,伴随着海水温度、营养物质以及能量的输送,对海洋生态系统和全球的气候变化起着重要影响。因此,海洋涡旋的智能识别成为海洋学的研究热点之一。由于海洋中尺度涡数量众多且... 海洋中尺度涡是一类重要的海洋现象,其特征是海洋中的螺旋运动,伴随着海水温度、营养物质以及能量的输送,对海洋生态系统和全球的气候变化起着重要影响。因此,海洋涡旋的智能识别成为海洋学的研究热点之一。由于海洋中尺度涡数量众多且大小不同,存在检测精度不高问题。为了提高海洋中尺度涡的检测精度,提出一种基于注意力的多尺度残差U-Net的海洋涡旋检测模型(dual cross-attention-pyramid spilt attention-Res U-Net, DCA-PRUNet)。该模型采用基于注意力的编解码器结构。编解码结构中,引入金字塔分割注意力(pyramid spilt attention,PSA)以提取多尺度特征,并捕获不同涡旋的特征信息;此外,为了解决网络过深导致模型无法训练的问题,引入残差学习模块。同时,为了使解码器更好地恢复涡旋细节信息,引入双交叉注意力模块(dual cross-attention, DCA)捕获编码器各个阶段的特征依赖。选取西北太平洋海域的海平面异常(sea level anomaly,SLA)与海面温度(sea surface temperature,SST)数据进行建模,实验结果表明DCA-PRUNet涡旋检测的准确率达到95.12%,F1分数达到91.21%,显著优于现有的模型,验证了该模型的有效性。 展开更多
关键词 海洋涡旋 深度学习 金字塔分割注意力 残差学习 双交叉注意力
在线阅读 下载PDF
基于对比学习增强双注意力机制的多标签文本分类方法
3
作者 余明峰 秦永彬 +2 位作者 黄瑞章 陈艳平 林川 《计算机应用》 北大核心 2025年第6期1732-1740,共9页
针对现有的基于注意力机制的方法难以捕捉文本之间复杂的依赖关系的问题,提出一种基于对比学习增强双注意力机制的多标签文本分类方法。首先,分别学习基于自注意力和基于标签注意力的文本表示,并融合二者以获得更全面的文本表示捕捉文... 针对现有的基于注意力机制的方法难以捕捉文本之间复杂的依赖关系的问题,提出一种基于对比学习增强双注意力机制的多标签文本分类方法。首先,分别学习基于自注意力和基于标签注意力的文本表示,并融合二者以获得更全面的文本表示捕捉文本的结构特征以及文本与标签之间的语义关联;其次,给定一个多标签对比学习目标,利用标签引导的文本相似度监督文本表示的学习,以捕捉文本之间在主题、内容和结构层面上复杂的依赖关系;最后,使用前馈神经网络作为分类器进行文本分类。实验结果表明,相较于LDGN(Label-specific Dual Graph neural Network),所提方法在EUR-Lex(European Union Law Document)数据集与Reuters-21578数据集上的排名第5处的归一化折现累积收益(nDCG@5)值分别提升了1.81和0.86个百分点,在AAPD(Arxiv Academic Paper Dataset)数据集与RCV1(Reuters Corpus VolumeⅠ)数据集上也都取得了有竞争力的结果。可见,所提方法能有效捕捉文本之间在主题、内容和结构层面上复杂的依赖关系,从而在多标签文本分类任务上取得较优结果。 展开更多
关键词 多标签文本分类 对比学习 注意力 标签注意力 注意力
在线阅读 下载PDF
基于时空注意力的3D人体姿态估计网络设计
4
作者 易见兵 张裕贤 +3 位作者 曹锋 李俊 彭鑫 陈鑫 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期130-144,共15页
在3D人体姿态估计中,遮挡会导致人体关节点提取不准确,针对该问题,本文提出一种结合时空注意力和通道注意力的3D人体姿态估计算法。首先,提出一种特征筛选模块,该模块通过引入位置嵌入模块,以进一步捕获人体关节点的特征信息;其次,提出... 在3D人体姿态估计中,遮挡会导致人体关节点提取不准确,针对该问题,本文提出一种结合时空注意力和通道注意力的3D人体姿态估计算法。首先,提出一种特征筛选模块,该模块通过引入位置嵌入模块,以进一步捕获人体关节点的特征信息;其次,提出一种移动视觉Transformer时间注意力模块,该模块通过引入SiLU激活函数,以获取更多姿态特征细节;最后,提出一种通道注意力模块,该模块通过引入并行分支处理架构及增加归一化层,以调整输出通道的特征权重,达到算法对人体姿态特征的关注和弱化其背景特征的目的。在Human3.6M数据集上进行实验,相较于基准模型Strided Transformer,将级联金字塔网络提取的2D关节点作为输入时,每关节位置误差的平均值和进行普罗克鲁斯对齐后的每关节位置误差的平均值分别下降2.5%和2.3%;将Human3.6M数据集标注的2D关节点作为输入时,每关节位置误差的平均值下降6.7%。实验结果表明,本文提出的算法准确性较高。 展开更多
关键词 3D人体姿态估计 遮挡 时空注意力 通道注意力 TRANSFORMER
在线阅读 下载PDF
基于联合交互注意力的图文情感分析方法
5
作者 胡慧君 丁子毅 +1 位作者 张耀峰 刘茂福 《北京航空航天大学学报》 北大核心 2025年第7期2262-2270,共9页
社交媒体中的图文情感对于引导舆论走向具有重要意义,越来越受到自然语言处理(NLP)领域的广泛关注。当前,社交媒体图文情感分析的研究对象主要为单幅图像文本对,针对无时序性及多样性的图集文本对的研究相对较少,为有效挖掘图集中图像... 社交媒体中的图文情感对于引导舆论走向具有重要意义,越来越受到自然语言处理(NLP)领域的广泛关注。当前,社交媒体图文情感分析的研究对象主要为单幅图像文本对,针对无时序性及多样性的图集文本对的研究相对较少,为有效挖掘图集中图像与文本之间情感一致性信息,提出基于联合交互注意力的图文情感分析(SA-JIA)方法。该方法使用RoBERTa和双向门控循环单元(Bi-GRU)来提取文本表达特征,使用ResNet50获取图像视觉特征,利用联合注意力来找到图文情感信息表达一致的显著区域,获得新的文本和图像视觉特征,采用交互注意力关注模态间的特征交互,并进行多模态特征融合,进而完成情感分类任务。在IsTS-CN数据集和CCIR20-YQ数据集上进行了实验验证,结果表明:所提方法能够提升社交媒体图文情感分析的性能。 展开更多
关键词 社交媒体 图文情感分析 联合注意力 交互注意力 多模态融合
在线阅读 下载PDF
图推理嵌入动态自注意力网络的文档级关系抽取
6
作者 李云洁 王丹阳 +2 位作者 刘海涛 汪华东 汪培庄 《智能系统学报》 北大核心 2025年第1期52-63,共12页
文档级关系抽取是指从文档中抽取所有具有语义关系的实体对并判断其关系类别,与句子级关系抽取不同,这里实体关系的确定需要根据文档中多个句子推理得到。现有方法主要采用自注意力进行文档级关系抽取,但是运用自注意力进行文档级关系... 文档级关系抽取是指从文档中抽取所有具有语义关系的实体对并判断其关系类别,与句子级关系抽取不同,这里实体关系的确定需要根据文档中多个句子推理得到。现有方法主要采用自注意力进行文档级关系抽取,但是运用自注意力进行文档级关系抽取需要面临两个技术挑战:即长文本语义编码存在的高计算复杂度和关系预测需要的复杂推理建模,故提出一种图推理嵌入动态自注意力网络(graph reasoning embedded dynamic self-attention network,GSAN)模型。该模型借助门限词选择机制动态选择重要词计算自注意力实现对长文本语义依赖的高效建模,同时考虑以选择词为全局语义背景与实体候选、文档节点一起构建文档图,将文档图的图推理聚合信息嵌入到动态自注意力模块中,实现模型对复杂推理建模的能力。在公开的文档级关系数据集CDR和DocRED上的实验结果表明,文中提出的模型较其他基线模型有显著提升。 展开更多
关键词 文档级关系抽取 图推理 动态自注意力网络 注意力机制 门限词选择机制 文档图 注意力网络 关键词
在线阅读 下载PDF
自适应卷积注意力与掩码结构协同的显著目标检测
7
作者 朱磊 袁金垚 +1 位作者 王文武 蔡小嫚 《电子与信息学报》 北大核心 2025年第1期260-270,共11页
显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点... 显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点的密集预测方式以获取像素显著值,然而该方式不符合基于人类视觉系统的场景解析机制,即人眼通常对语义区域进行整体分析而非关注像素级信息;(2)增强上下文信息关联在SOD任务中受到广泛关注,但通过Transformer主干结构获取长程关联特征不一定具有优势。SOD应更关注目标在适当区域内其中心-邻域差异性而非全局长程依赖。针对上述问题,该文提出一种新的显著目标检测模型,将CNN形式的自适应注意力和掩码注意力集成到网络中,以提高显著目标检测的性能。该算法设计了基于掩码感知的解码模块,通过将交叉注意力限制在预测的掩码区域来感知图像特征,有助于网络更好地聚焦于显著目标的整体区域。同时,该文设计了基于卷积注意力的上下文特征增强模块,与Transformer逐层建立长程关系不同,该模块仅捕获最高层特征中的适当上下文关联,避免引入无关的全局信息。该文在4个广泛使用的数据集上进行了实验评估,结果表明,该文提出的方法在不同场景下均取得了显著的性能提升,具有良好的泛化能力和稳定性。 展开更多
关键词 显著目标检测 卷积神经网络形式的自适应注意力 掩码注意力 特征增强
在线阅读 下载PDF
深层注意力和两阶段融合的图文情感对比学习方法
8
作者 余本功 石中玉 《计算机工程与应用》 北大核心 2025年第3期223-233,共11页
图文数据逐渐成为网络舆情的主流载体,图文情感分析利用多模态的信息互补效应提高情感分析效果,在人机对话、舆情监控等领域具备极大的应用潜能。以往的研究大多将图像和文本的特征拼接后再使用注意力进行融合,模态信息交互不充分,融合... 图文数据逐渐成为网络舆情的主流载体,图文情感分析利用多模态的信息互补效应提高情感分析效果,在人机对话、舆情监控等领域具备极大的应用潜能。以往的研究大多将图像和文本的特征拼接后再使用注意力进行融合,模态信息交互不充分,融合特征存在大量的噪声。提出了一种深层注意力和两阶段融合的图文情感对比学习方法。使用深层跨模态注意力网络进行模态交互,有助于提取不同模态的隐藏信息。设计的跨模态门控融合模块利用门控机制和注意力实现特征的两阶段融合,动态调整特征权重,降低数据噪声。模型通过对比学习和情感分类任务的联合训练,充分捕获与情感相关的跨模态共同特征,有利于提升模型的鲁棒性。方法在MVSA-Single、MVSA-Multiple和HFM等数据集上进行实验得到的准确率和F1值相较于基线模型的最优者平均提升了1.04和0.96个百分点。 展开更多
关键词 图文情感分析 深层注意力 两阶段融合 门控注意力机制 对比学习
在线阅读 下载PDF
基于注意力增强Uniformer的锂电池剩余使用寿命预测
9
作者 廖列法 刘映宝 占玉敏 《汽车技术》 北大核心 2025年第6期36-44,共9页
针对锂离子电池的剩余使用寿命(RUL)预测时常面临数据的动态变化和老化数据有限的问题,提出注意力增强Uniformer(AEUniformer)的RUL预测模型,通过Uniformer整合卷积神经网络(CNN)和自注意力机制的优势实现全面的信息感知;设计注意力引... 针对锂离子电池的剩余使用寿命(RUL)预测时常面临数据的动态变化和老化数据有限的问题,提出注意力增强Uniformer(AEUniformer)的RUL预测模型,通过Uniformer整合卷积神经网络(CNN)和自注意力机制的优势实现全面的信息感知;设计注意力引导机制(AGM)和CoordAttention实现强大的特征提取。试验结果表明,AEUniformer可以实现仅需单个老化周期的准确快速的RUL预测,数据集的平均绝对百分比误差分别为2.7%和6.16%,证明了该方法的准确性。 展开更多
关键词 锂电池 剩余使用寿命预测 数据驱动 统一变形器 注意力引导机制 坐标注意力
在线阅读 下载PDF
基于混合注意力和类型感知的方面级情感分析
10
作者 王红霞 张佳慧 聂振凯 《高技术通讯》 北大核心 2025年第3期262-272,共11页
为解决方面级情感分析(aspect-based sentiment analysis,ABSA)任务中,未充分利用依赖树中的句法信息及语义信息提取不充分等问题,提出了基于混合注意力和类型感知的双图卷积网络模型。首先,设计了混合注意力模块,用于更全面地提取句子... 为解决方面级情感分析(aspect-based sentiment analysis,ABSA)任务中,未充分利用依赖树中的句法信息及语义信息提取不充分等问题,提出了基于混合注意力和类型感知的双图卷积网络模型。首先,设计了混合注意力模块,用于更全面地提取句子的语义信息,该模块采用方面感知注意力机制,学习与方面项相关的局部语义特征,再结合自注意力机制学习句子的全局语义特征。其次,为了更充分地利用依赖树中的句法信息,设计了利用依赖关系类型构建类型感知图模块,并采用注意力机制区分不同依赖类型的重要程度,重构带有权重的类型感知图。最后,通过图神经网络来挖掘更深层次的语义和句法信息。在Restaurant14、Laptop14和Twitter公开数据集上进行实验,实验结果表明,与基准模型相比,本文提出的模型具有更好的分类效果。 展开更多
关键词 方面级情感分析 注意力机制 方面感知注意力 类型感知图 图神经网络
在线阅读 下载PDF
基于注意力与图对比学习方法的社交影响预测方法
11
作者 江丽 《安徽大学学报(自然科学版)》 北大核心 2025年第3期20-26,共7页
近年来,通过引入自注意力机制,图注意力网络(graph attention networks,简称GAT)在社交网络影响力预测上取得较好的预测效果.然而,现有的基于图注意力网络的方法往往忽略了自注意力机制中多头信息之间的协同性和差异性,缺乏对多头信息... 近年来,通过引入自注意力机制,图注意力网络(graph attention networks,简称GAT)在社交网络影响力预测上取得较好的预测效果.然而,现有的基于图注意力网络的方法往往忽略了自注意力机制中多头信息之间的协同性和差异性,缺乏对多头信息的协同挖掘与有效利用.提出一种基于多头对比学习与图注意力神经网络模型的社交影响预测方法.该方法通过引入对比学习机制,实现多头自注意力机制的输出之间一致性与差异性的对比,提升多头图注意力神经网络模型的学习能力.实验结果表明,该方法能够进一步提高社交影响力的预测效果. 展开更多
关键词 注意力网络 多头自注意力机制 社交影响 对比学习
在线阅读 下载PDF
基于多尺度空间注意力引导的图像超分辨率重建网络
12
作者 程德强 王培杰 +2 位作者 董彦强 寇旗旗 江鹤 《北京航空航天大学学报》 北大核心 2025年第7期2185-2195,共11页
针对基于注意力机制的图像超分辨率重建网络忽视了注意力特征的差异性,仅将注意力机制直接引入到网络模型中,对不同层次特征进行相同处理的问题,设计了一种多尺度空间注意力引导的图像超分辨率重建网络SAGN。提出了增强特征提取残差块(E... 针对基于注意力机制的图像超分辨率重建网络忽视了注意力特征的差异性,仅将注意力机制直接引入到网络模型中,对不同层次特征进行相同处理的问题,设计了一种多尺度空间注意力引导的图像超分辨率重建网络SAGN。提出了增强特征提取残差块(ERB),完善了局部信息的表征能力;集成了多尺度空间注意力(MSA)模块,获取了MSA特征信息;引入了注意力引导模块(AGM),对不同的特征分配个性化的权重,以实现有效的上下文全局特征融合和冗余信息抑制。实验结果表明:量化测试和主观效果上,相比于传统的注意力结构,SAGN在4个基准数据集上都展现出了优越性,其4倍重建结果的峰值信噪比(PSNR)较次优模型平均提高了0.05 dB,进一步证实了SAGN在恢复图像的几何结构和细节方面的优势。 展开更多
关键词 超分辨率重建 卷积神经网络 注意力机制 多尺度空间注意力 注意力引导
在线阅读 下载PDF
基于上下文通道注意力机制的人脸属性估计与表情识别 被引量:2
13
作者 徐杰 钟勇 +2 位作者 王阳 张昌福 杨观赐 《计算机应用》 北大核心 2025年第1期253-260,共8页
人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先... 人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先,构建基于ConvNext的局部特征编码骨干网络,并运用骨干网络编码局部特征的有效性来充分表征人脸局部特征之间的差异性;其次,提出上下文通道注意力(CC Attention)机制,通过动态自适应调整特征通道上的权重信息,表征深度特征的全局和局部特征,从而弥补骨干网络编码全局特征能力的不足;最后,设计不同分类策略,针对人脸属性估计(FAE)和面部表情识别(FER)任务,分别采用不同损失函数组合,以促使模型学习更多的面部细粒度特征。实验结果表明,所提FAER模型在人脸属性数据集CelebA(CelebFaces Attributes)上取得了91.87%的平均准确率,相较于次优模型SwinFace(Swin transformer for Face)高出0.55个百分点;在面部表情数据集RAF-DB和AffectNet上分别取得了91.75%和66.66%的准确率,相较于次优模型TransFER(Transformers for Facial Expression Recognition)分别高出0.84和0.43个百分点。 展开更多
关键词 人脸属性估计 面部表情识别 注意力机制 细粒度特征 特征差异
在线阅读 下载PDF
结合通道剪枝和通道注意力的轻量型车辆点云补全网络 被引量:1
14
作者 杨晓文 冯泊栋 +3 位作者 韩慧妍 况立群 韩燮 何黎刚 《计算机工程与应用》 北大核心 2025年第1期232-242,共11页
针对现有的点云补全网络多关注于补全的精度而忽视补全效率问题,提出了一种轻量型点云补全网络来准确、高效地修复自动驾驶中的不完整车辆点云。为了提高网络推理效率,采用一种高效的一次性通道剪枝技术提高网络的补全效率;在特征提取阶... 针对现有的点云补全网络多关注于补全的精度而忽视补全效率问题,提出了一种轻量型点云补全网络来准确、高效地修复自动驾驶中的不完整车辆点云。为了提高网络推理效率,采用一种高效的一次性通道剪枝技术提高网络的补全效率;在特征提取阶段,网络加入通道注意力模块,将加权特征与全局特征拼接,通过两层多维特征信息提取,得到最终的特征向量;将特征向量传入双解码器结构中,分别通过全连接层和多层感知机生成稠密的粗糙点云和输入点云偏差值;将粗糙点云与输入点云偏差值相加得到最终的精细化完整点云。在PCN数据集和KITTI数据集上进行实验,实验结果表明在补全缺失车辆信息的实时性上有着显著的提升,并且在补全精度上也有不错的表现。 展开更多
关键词 点云补全 通道剪枝 通道注意力 轻量型 深度学习
在线阅读 下载PDF
SDENet:基于多尺度注意力质量感知的合成缺陷数据评价网络 被引量:2
15
作者 卢洋 陈林慧 +1 位作者 姜晓恒 徐明亮 《图学学报》 北大核心 2025年第1期94-103,共10页
通过对数据扩增方式合成的缺陷数据进行质量评估,有助于实现缺陷数据高质量扩充,进而缓解缺陷数据不足导致的检测模型性能不佳问题。针对现有质量评价算法在评估合成缺陷数据质量时更关注数据的失真特性而忽略了对数据缺陷属性考量的问... 通过对数据扩增方式合成的缺陷数据进行质量评估,有助于实现缺陷数据高质量扩充,进而缓解缺陷数据不足导致的检测模型性能不佳问题。针对现有质量评价算法在评估合成缺陷数据质量时更关注数据的失真特性而忽略了对数据缺陷属性考量的问题,提出一种基于注意力特征增强(AFE)和多尺度注意力质量感知(MAQP)的模型SDENet,综合考虑数据的失真特性和缺陷属性进行质量评价。首先,AFE通过双分支池化操作提高模型对不同尺寸、位置缺陷的泛化能力,并结合注意力机制增强模型对特征的表达。其次,MAQP对AFE增强后的特征进行向量化与融合处理,以更好地感知合成缺陷数据质量。最后,对融合后的特征进行质量评估,得到最终的评估分数。在构建的合成道路裂缝缺陷数据集上进行实验,结果表明,SDENet模型在RMSE,RMAE,PLCC和SROCC指标上均取得最优结果,比次优模型依次提升10.7%,5.0%,1.8%和1.8%,验证了模型的有效性。在失真数据集TID2013上,SDENet模型也取得较有竞争的结果,在PLCC和SROCC指标上依次达到0.902和0.876。 展开更多
关键词 注意力机制 特征增强 特征融合 合成缺陷数据 质量评价
在线阅读 下载PDF
基于特征增强的双重注意力去雾网络 被引量:1
16
作者 陈海秀 黄仔洁 +5 位作者 陆康 陆成 何珊珊 房威志 卢海涛 陈子昂 《电光与控制》 北大核心 2025年第1期15-20,67,共7页
针对现有去雾方法处理的图像细节模糊和色彩偏差等问题,提出了一种基于特征增强的双重注意力去雾网络。该网络采用编码器-解码器结构,设计了一个双重注意力特征增强模块,其中,利用Ghost模块替代非线性卷积,实现模型轻量化处理,通过RFB... 针对现有去雾方法处理的图像细节模糊和色彩偏差等问题,提出了一种基于特征增强的双重注意力去雾网络。该网络采用编码器-解码器结构,设计了一个双重注意力特征增强模块,其中,利用Ghost模块替代非线性卷积,实现模型轻量化处理,通过RFB充分融合不同尺度的特征,实现均匀去雾,引入双重注意力实现信息跨通道与空间交互,保证模型性能和抑制噪声特征。使用RESIDE数据集对网络进行训练和测试。实验结果表明,所提算法在主观视觉和客观评价指标上均有优异表现,能有效地提升网络的特征提取能力,实现对不同场景雾图的色彩恢复,增强图像的对比度和清晰度。 展开更多
关键词 图像去雾 特征增强 并行分支结构 多尺度映射 注意力机制
在线阅读 下载PDF
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
17
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
基于GAN和多尺度空间注意力的多模态医学图像融合 被引量:3
18
作者 林予松 李孟娅 +1 位作者 李英豪 赵哲 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期1-8,共8页
针对多模态医学图像融合过程中多尺度特征和纹理细节信息丢失的问题,提出一种基于生成对抗网络和多尺度空间注意力的图像融合算法。首先,生成器采用自编码器结构,分别利用编码器和解码器对输入图像进行特征提取、融合和重建,生成融合图... 针对多模态医学图像融合过程中多尺度特征和纹理细节信息丢失的问题,提出一种基于生成对抗网络和多尺度空间注意力的图像融合算法。首先,生成器采用自编码器结构,分别利用编码器和解码器对输入图像进行特征提取、融合和重建,生成融合图像;其次,整个对抗网络框架采用双鉴别器结构,使得生成器生成的融合图像同时保留多个模态图像的显著特征;最后,构建一种多尺度空间注意力作为编码器进行特征提取的基本模块,利用多尺度结构充分捕获并保留源图像的多尺度特征,并且引入空间注意力更好地保留源图像的结构和细节信息。全脑图谱数据库上的实验结果表明:所提算法生成的融合图像不仅纹理细节更为丰富,有助于人类视觉观察,而且在3种不同类型的医学图像融合任务上平均梯度、峰值信噪比、互信息、视觉信息保真度等客观评价指标的平均值分别达到0.3023、20.7207、1.4414、0.6498,与其他先进的算法相比具有一定的优势。 展开更多
关键词 图像融合 多模态医学图像 生成对抗网络 特征金字塔 注意力机制
在线阅读 下载PDF
数字化导向、环境可持续导向对农业企业绿色产品创新的影响研究——基于注意力基础观视角 被引量:2
19
作者 张秀娥 李伊婧 +1 位作者 杨柳 滕欣宇 《研究与发展管理》 北大核心 2025年第1期85-97,共13页
环境问题已成为全球性挑战,农业企业管理者应将他们的注意力转移到能够减少资源利用并降低对环境负面影响的绿色产品创新上。基于注意力基础观的焦点原则和情境原则,考察数字化导向和环境可持续导向的注意力焦点对企业绿色产品创新行为... 环境问题已成为全球性挑战,农业企业管理者应将他们的注意力转移到能够减少资源利用并降低对环境负面影响的绿色产品创新上。基于注意力基础观的焦点原则和情境原则,考察数字化导向和环境可持续导向的注意力焦点对企业绿色产品创新行为的影响,以及技术动荡性和绿色研发投入两类情境因素的调节作用。通过对243份农业企业样本数据的实证检验发现:数字化导向和环境可持续导向对绿色产品创新均有显著正向影响,且环境可持续导向的正向作用高于数字化导向的正向作用;技术动荡性强化了数字化导向与绿色产品创新之间的正相关关系,但削弱了环境可持续导向与绿色产品创新之间的正相关关系;绿色研发投入强化了数字化导向与绿色产品创新之间的正相关关系以及环境可持续导向与绿色产品创新之间的正相关关系。此外,异质性分析结果显示,相较于非国有企业和中西部地区企业,国有企业和东部地区企业通过聚焦于数字化导向和环境可持续导向更能显著促进绿色产品创新。研究结果为组织的绿色产品创新提供了基于注意力基础观的解释,有助于丰富有关绿色产品创新特定前因的研究,并为管理者和政策制定者提供了实践启示。 展开更多
关键词 绿色产品创新 数字化导向 环境可持续导向 技术动荡性 绿色研发投入 注意力基础观 农业企业
在线阅读 下载PDF
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
20
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 TRANSFORMER 注意力模块 梯度融合
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部