针对经典高分辨波达方位(DOA)估计方法在低信噪比下分辨性能较差的问题,该文提出一种适用于主动探测系统的基于互相关矩阵的改进多重信号分类(MUSIC)高分辨方位估计方法(I-MUSIC)。该方法首先利用主动声呐发射信号已知的特性,将发射信...针对经典高分辨波达方位(DOA)估计方法在低信噪比下分辨性能较差的问题,该文提出一种适用于主动探测系统的基于互相关矩阵的改进多重信号分类(MUSIC)高分辨方位估计方法(I-MUSIC)。该方法首先利用主动声呐发射信号已知的特性,将发射信号与阵元接收信号进行互相关,利用互相关序列形成新的空域协方差矩阵,再进行特征分解。理论分析表明,互相关处理在抑制噪声的同时保留了阵元之间的相位信息,可以得到比MUSIC方法更准确的子空间划分,进而提高低信噪比方位估计性能。在此基础上,提出一种基于相关时间门限的改进MUSIC高分辨方位估计(T-MUSIC)方法,通过对互相关序列设置时间门限进一步提高方位估计信噪比。仿真结果表明,与MUSIC方法相比,I-MUSIC与T-MUSIC可以分别使低信噪比时的估计性能提高3 d B和6 d B,相应平均估计误差分别为原方法的77%和53%。在阵元间接收噪声存在相关性时,T-MUSIC与I-MUSIC方法相比可获得8 d B的估计增益,估计性能更优。I-MUSIC与T-MUSIC应用于多目标主动探测,可大幅提高探测系统在低信噪比下的方位估计性能。展开更多
针对传统波达方向(Direction of Arrival,DOA)估计方法通过空间平滑对相干信号进行处理损失阵列孔径的问题,文章提出了一种基于协方差矩阵托普利兹(Toeplitz)矩阵重构的多重信号分类(Multiple Signal Classification,MUSIC)算法的波达...针对传统波达方向(Direction of Arrival,DOA)估计方法通过空间平滑对相干信号进行处理损失阵列孔径的问题,文章提出了一种基于协方差矩阵托普利兹(Toeplitz)矩阵重构的多重信号分类(Multiple Signal Classification,MUSIC)算法的波达方位估计方法。该方法首先根据阵列接收数据的协方差矩阵及其翻转矩阵来构造新协方差矩阵,并利用新协方差矩阵构造Toeplitz矩阵,然后对其进行特征值分解,得到Toeplitz矩阵的噪声子空间,利用噪声子空间求出信号空间谱,通过谱峰搜索估计入射信号的方位角。文中方法拓展了阵列孔径,增加了可估计相干信号的数量,提升了方位估计的性能,提高了阵列的空间分辨率。仿真和湖上实验数据处理结果表明,文中方法可估计出更多的相干信号,而且在低信噪比、少快拍以及信号入射角度间隔较小时仍然具有良好的方位估计性能。展开更多
针对短时小样本条件下相干信号的波达方向(Direction Of Arrival,DOA)估计问题,该文提出了一种基于相干积累矩阵重构的快速解相干方法。首先利用相干积累技术对阵列接收快拍进行处理,得到累积快拍矢量,提高了数据信噪比。再依据累积快...针对短时小样本条件下相干信号的波达方向(Direction Of Arrival,DOA)估计问题,该文提出了一种基于相干积累矩阵重构的快速解相干方法。首先利用相干积累技术对阵列接收快拍进行处理,得到累积快拍矢量,提高了数据信噪比。再依据累积快拍矢量的结构特点构造一个非降维等效协方差矩阵,理论分析可知,该矩阵的秩仅与信源个数相等,与信号间相关性无关,即实现了相干信源完全解相干。相较于空间平滑类算法,该方法避免了阵列孔径损失,估计精度高、计算量小。仿真结果验证了算法的有效性。展开更多
文摘针对经典高分辨波达方位(DOA)估计方法在低信噪比下分辨性能较差的问题,该文提出一种适用于主动探测系统的基于互相关矩阵的改进多重信号分类(MUSIC)高分辨方位估计方法(I-MUSIC)。该方法首先利用主动声呐发射信号已知的特性,将发射信号与阵元接收信号进行互相关,利用互相关序列形成新的空域协方差矩阵,再进行特征分解。理论分析表明,互相关处理在抑制噪声的同时保留了阵元之间的相位信息,可以得到比MUSIC方法更准确的子空间划分,进而提高低信噪比方位估计性能。在此基础上,提出一种基于相关时间门限的改进MUSIC高分辨方位估计(T-MUSIC)方法,通过对互相关序列设置时间门限进一步提高方位估计信噪比。仿真结果表明,与MUSIC方法相比,I-MUSIC与T-MUSIC可以分别使低信噪比时的估计性能提高3 d B和6 d B,相应平均估计误差分别为原方法的77%和53%。在阵元间接收噪声存在相关性时,T-MUSIC与I-MUSIC方法相比可获得8 d B的估计增益,估计性能更优。I-MUSIC与T-MUSIC应用于多目标主动探测,可大幅提高探测系统在低信噪比下的方位估计性能。
文摘针对传统波达方向(Direction of Arrival,DOA)估计方法通过空间平滑对相干信号进行处理损失阵列孔径的问题,文章提出了一种基于协方差矩阵托普利兹(Toeplitz)矩阵重构的多重信号分类(Multiple Signal Classification,MUSIC)算法的波达方位估计方法。该方法首先根据阵列接收数据的协方差矩阵及其翻转矩阵来构造新协方差矩阵,并利用新协方差矩阵构造Toeplitz矩阵,然后对其进行特征值分解,得到Toeplitz矩阵的噪声子空间,利用噪声子空间求出信号空间谱,通过谱峰搜索估计入射信号的方位角。文中方法拓展了阵列孔径,增加了可估计相干信号的数量,提升了方位估计的性能,提高了阵列的空间分辨率。仿真和湖上实验数据处理结果表明,文中方法可估计出更多的相干信号,而且在低信噪比、少快拍以及信号入射角度间隔较小时仍然具有良好的方位估计性能。
文摘针对短时小样本条件下相干信号的波达方向(Direction Of Arrival,DOA)估计问题,该文提出了一种基于相干积累矩阵重构的快速解相干方法。首先利用相干积累技术对阵列接收快拍进行处理,得到累积快拍矢量,提高了数据信噪比。再依据累积快拍矢量的结构特点构造一个非降维等效协方差矩阵,理论分析可知,该矩阵的秩仅与信源个数相等,与信号间相关性无关,即实现了相干信源完全解相干。相较于空间平滑类算法,该方法避免了阵列孔径损失,估计精度高、计算量小。仿真结果验证了算法的有效性。