期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于波场数值模拟的瑞利波频散曲线特征及各模式能量分布 被引量:20
1
作者 邵广周 李庆春 吴华 《石油地球物理勘探》 EI CSCD 北大核心 2015年第2期306-315,5,共10页
在实际地震瑞利波勘探中,由于各模式激发的能量不同,提取到的频散曲线的频段也不一样,有些频段因能量低,而不能被提取出来。因此各模式频散曲线的特征以及实际激发情况还需要通过时间域地震记录来分析。本文采用数值模拟方法,首先得到... 在实际地震瑞利波勘探中,由于各模式激发的能量不同,提取到的频散曲线的频段也不一样,有些频段因能量低,而不能被提取出来。因此各模式频散曲线的特征以及实际激发情况还需要通过时间域地震记录来分析。本文采用数值模拟方法,首先得到瑞利波场数值模拟记录,然后由这些记录提取瑞利波的频散曲线,将提取得到的频散曲线与由频散方程计算得到的频散曲线进行比较,分析不同模型由时域记录提取出的频散曲线的特征及其频带范围,归纳总结多种模型的多阶模式频散曲线特征及各模式在瑞利波场中的能量分布情况。 展开更多
关键词 频散曲线 频散方程 瑞利 波场数值模拟
在线阅读 下载PDF
虚谱法交错网格地震波场数值模拟 被引量:4
2
作者 杜增利 徐峰 高宏亮 《石油物探》 EI CSCD 北大核心 2010年第5期430-437,17,共8页
提高空间差分精度、有效压制人为边界反射是波动方程波场模拟的关键。虚谱法利用模型空间的全部信息对波场函数进行傅里叶变换,可以得到精确的波场空间导数,使数值频散效应减弱,进而实现宽频带地震波场模拟。阐述了求解弹性波波动方程... 提高空间差分精度、有效压制人为边界反射是波动方程波场模拟的关键。虚谱法利用模型空间的全部信息对波场函数进行傅里叶变换,可以得到精确的波场空间导数,使数值频散效应减弱,进而实现宽频带地震波场模拟。阐述了求解弹性波波动方程的方法原理,讨论了数值模拟中Gibbs效应和边界反射问题的解决方法,即在半网格点处计算空间导数并采用最佳匹配层边界条件。设计了5层水平层状介质模型,讨论了虚谱法的模拟精度和计算效率,试算表明,适当增大差分网格和时间延拓步长不会影响计算精度,但计算效率可以得到大幅度提高。分别采用不同的差分方法对Marmousi2模型和SEG/EAGE模型进行数值模拟,结果表明,虚谱法交错网格模拟结果信噪比高,在同等模拟精度条件下较其它方法具有更高的计算效率。 展开更多
关键词 虚谱法 交错网格 地震模拟 波场数值模拟 计算效率 利用模型 模拟精度 空间 解决方法 动方程 边界反射 最佳匹配层 傅里叶变换 频散效应 讨论 模拟结果 介质模型 计算精度 导数 差分网格
在线阅读 下载PDF
黏弹各向异性介质中波的反射与透射问题分析 被引量:20
3
作者 刘财 郭智奇 +2 位作者 杨宝俊 王晓欢 冯晅 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2007年第4期1216-1224,共9页
黏弹各向异性介质中传播不均匀波,其反射、透射模式不仅与介质分界面两侧速度对比有关,还与品质因子Q的对比有关.用伪谱技术模拟黏弹各向异性介质分界面上波的反射、透射,并与弹性各向异性介质、黏弹各向同性介质和弹性各向同性介质的... 黏弹各向异性介质中传播不均匀波,其反射、透射模式不仅与介质分界面两侧速度对比有关,还与品质因子Q的对比有关.用伪谱技术模拟黏弹各向异性介质分界面上波的反射、透射,并与弹性各向异性介质、黏弹各向同性介质和弹性各向同性介质的模拟结果做比较.计算平面波的反射、透射系数,分析介质的黏弹性和各向异性对反射、透射系数的影响.数值模拟了一个三层介质模型中的波场,分析两个分界面上产生的反射波的特征.黏弹各向异性介质中,qS波比qP波衰减程度大. 展开更多
关键词 黏弹各向异性 不均匀 反射透射 伪谱法 波场数值模拟
在线阅读 下载PDF
有限元法与伪谱法混合求解弹性波动方程 被引量:19
4
作者 马德堂 朱光明 《地球科学与环境学报》 CAS 2004年第1期61-64,共4页
 在地震波场数值模拟中,有限差分法、有限元法和伪谱法都是常用的基本方法,但它们各有不同的适应性和优缺点,如有限差分法、有限元法都存在减弱网格频散和提高计算效率的矛盾,而伪谱法的网格频散小且计算效率高。有限差分法和伪谱法在...  在地震波场数值模拟中,有限差分法、有限元法和伪谱法都是常用的基本方法,但它们各有不同的适应性和优缺点,如有限差分法、有限元法都存在减弱网格频散和提高计算效率的矛盾,而伪谱法的网格频散小且计算效率高。有限差分法和伪谱法在处理地表结构复杂或地表剧烈起伏以及地下结构复杂的情况时存在较大的难度,而有限元法可较为理想地拟合起伏地表和任意弯曲界面,且可方便地处理自由边界条件和界面边界条件。尝试将有限元法和伪谱法相结合,形成地震波场数值模拟的一种混合方法,利用二者的优点,克服二者的缺点,达到既减弱网格频散又提高计算精度和效率的目的。并采用所谓的'过度区域'技术解决两种不同算法的衔接问题。模拟实例表明,给出的混合模拟方法不失为弹性波场数值模拟的一种有效方法。 展开更多
关键词 弹性波场数值模拟 有限元法 伪谱法 混合模拟方法
在线阅读 下载PDF
变分数阶粘弹波动方程最小二乘快速解法 被引量:1
5
作者 赵强 朱成宏 +1 位作者 姜大建 魏哲枫 《石油物探》 CSCD 北大核心 2023年第2期258-270,共13页
由于分数阶粘弹波动方程存在变分数阶拉普拉斯算子,其数值求解需要对不同品质因子的空间任意点均进行全域的正反傅里叶变换,因而计算量巨大,难以满足实际生产需求。通过引入最小二乘理论,构建变分数阶空间波数混合域算子与波数域算子间... 由于分数阶粘弹波动方程存在变分数阶拉普拉斯算子,其数值求解需要对不同品质因子的空间任意点均进行全域的正反傅里叶变换,因而计算量巨大,难以满足实际生产需求。通过引入最小二乘理论,构建变分数阶空间波数混合域算子与波数域算子间的逼近关系,将空间波数混合域变分数阶算子分解为波数域常分数阶算子与空间域算子的形式,有效避免直接求取空间波数混合域算子时计算量大的问题,从而构建变分数阶粘弹波动方程的常分数阶求解形式,实现变分数阶粘弹波动方程快速求解。数值模拟计算结果表明,在品质因子非均值的情况下,该方法的计算精度优于平均品质因子模拟方法,计算量小于分块模拟方法,且提速比随着地下品质因子复杂度的提高而更加明显,在保证精度的前提下可大幅提高粘弹波场模拟效率,有利于后续相应高效粘弹成像算法的开发。 展开更多
关键词 粘弹波场数值模拟 分数阶拉普拉斯算子 粘弹动方程 最小二乘理论 空间数混合域算子 品质因子 计算效率
在线阅读 下载PDF
Bottom Pressure Field Induced by Submerged Vehicle in Regular Waves
6
作者 YI Wen−bin ZHANG Zhi−hong +4 位作者 DENG Hui MENG Qing−chang XIA Wei−xue WANG Chong LI Pei−hao 《船舶力学》 北大核心 2025年第6期863-877,共15页
The finite volume method was applied to numerically simulate the bottom pressure field induced by regular waves,vehicles in calm water and vehicles in regular waves.The solution of Navier-Stokes(N-S)equations in the v... The finite volume method was applied to numerically simulate the bottom pressure field induced by regular waves,vehicles in calm water and vehicles in regular waves.The solution of Navier-Stokes(N-S)equations in the vicinity of numerical wave tank's boundary was forced towards the wave theoretical solution by incorporating momentum source terms,thereby reducing adverse effects such as wave reflection.Simulations utilizing laminar flow,turbulent flow,and ideal fluid models were all found capable of effectively capturing the waveform and bottom pressure of regular waves,agreeing well with experimental data.In predicting the bottom pressure field of the submerged vehicle,turbulent simulations considering fluid viscosity and boundary layer development provided more accurate predictions for the stern region than inviscid simulations.Due to sphere's diffractive effect,the sphere's bottom pressure field in waves is not a linear superposition of the wave's and the sphere's bottom pressure field.However,a slender submerged vehicle exhibits a weaker diffractive effect on waves,thus the submerged vehicle's bottom pressure field in waves can be approximated as a linear superposition of the wave's and the submerged vehicle's bottom pressure field,which simplifies computation and analysis. 展开更多
关键词 regular wave submerged vehicle bottom pressure field numerical simulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部