Due to rainfall infiltration,groundwater activity,geological processes,and natural erosion,soil often exhibits heterogeneity and unsaturation.Additionally,seismic events can compromise slope stability.Existing analyti...Due to rainfall infiltration,groundwater activity,geological processes,and natural erosion,soil often exhibits heterogeneity and unsaturation.Additionally,seismic events can compromise slope stability.Existing analytical solutions typically consider a single failure mode,leading to inaccurate slope stability assessments.This study analyzes the impact of matric suction through three nonlinear shear strength models and adopts a heterogeneous soil model where cohesion linearly increases with depth.An improved pseudo-dynamic method is used to account for seismic effects.Based on a three-dimensional(3D)trumpet-shaped rotational failure mechanism,a new framework is established to analyze the stability of 3D two-bench slopes in heterogeneous unsaturated soil under seismic effects.The internal energy dissipation rate and external power at failure are calculated,and the gravity increase method is introduced to derive an explicit expression for the safety factor(F_(s)).The results are compared with previously published results,demonstrating the effectiveness of the proposed method.Sensitivity analyses on different parameters are conducted,discussing the influence of various factors on F s.This study proposes a new formula for calculating the F_(s) of 3D two-bench slopes in heterogeneous unsaturated soil under seismic effects,providing a practical application for slope engineering.展开更多
The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density ...The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density functional theory (DFT) and the improved quasi-harmonic Debye method. The results show that the total density of states (DOS) of TiB2 is mainly provided by the orbit hybridization of Ti-3d and B-2p states, and the total DOS of TiB is mainly provided by the hybrids bond of Ti-3d and B-2p below the Fermi level and Ti—Ti bond up to the Fermi level. The Ti—B hybrid bond in TiB2 is stronger than that in TiB. Finally, the enthalpy of formation at 0 K, heat capacity and Gibbs free energy of formation at various temperatures were determined. The calculated results are in excellent agreement with the available experimental data.展开更多
基金Project(51378510)supported by the National Natural Science Foundation of China。
文摘Due to rainfall infiltration,groundwater activity,geological processes,and natural erosion,soil often exhibits heterogeneity and unsaturation.Additionally,seismic events can compromise slope stability.Existing analytical solutions typically consider a single failure mode,leading to inaccurate slope stability assessments.This study analyzes the impact of matric suction through three nonlinear shear strength models and adopts a heterogeneous soil model where cohesion linearly increases with depth.An improved pseudo-dynamic method is used to account for seismic effects.Based on a three-dimensional(3D)trumpet-shaped rotational failure mechanism,a new framework is established to analyze the stability of 3D two-bench slopes in heterogeneous unsaturated soil under seismic effects.The internal energy dissipation rate and external power at failure are calculated,and the gravity increase method is introduced to derive an explicit expression for the safety factor(F_(s)).The results are compared with previously published results,demonstrating the effectiveness of the proposed method.Sensitivity analyses on different parameters are conducted,discussing the influence of various factors on F s.This study proposes a new formula for calculating the F_(s) of 3D two-bench slopes in heterogeneous unsaturated soil under seismic effects,providing a practical application for slope engineering.
基金Project(07JJ3102)supported by the Natural Science Foundation of Hunan Province,ChinaProject(k0902132-11)supported by the Changsha Municipal Science and Technology,China
文摘The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density functional theory (DFT) and the improved quasi-harmonic Debye method. The results show that the total density of states (DOS) of TiB2 is mainly provided by the orbit hybridization of Ti-3d and B-2p states, and the total DOS of TiB is mainly provided by the hybrids bond of Ti-3d and B-2p below the Fermi level and Ti—Ti bond up to the Fermi level. The Ti—B hybrid bond in TiB2 is stronger than that in TiB. Finally, the enthalpy of formation at 0 K, heat capacity and Gibbs free energy of formation at various temperatures were determined. The calculated results are in excellent agreement with the available experimental data.