期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
法向量位置模型下旋转调制惯导极区综合校正算法 被引量:3
1
作者 刘潺 吴文启 +1 位作者 冯国虎 王茂松 《中国惯性技术学报》 EI CSCD 北大核心 2023年第2期107-113,共7页
为抑制极区惯性导航系统随时间积累的导航误差,提出一种基于法向量位置模型的综合校正算法,对旋转调制惯导系统的等效方位陀螺常值漂移进行了估计。在法向量位置模型下建立了位置误差与漂移角之间的数学模型,推导了漂移角和等效方位陀... 为抑制极区惯性导航系统随时间积累的导航误差,提出一种基于法向量位置模型的综合校正算法,对旋转调制惯导系统的等效方位陀螺常值漂移进行了估计。在法向量位置模型下建立了位置误差与漂移角之间的数学模型,推导了漂移角和等效方位陀螺常值漂移的方程,在外水平阻尼条件下设计实现了综合校正算法。基于北极实际航测数据的处理试验结果表明,提出的综合校正算法具有全球适用性,能够估计等效方位陀螺常值漂移以提高导航定位精度,采用所提综合校正算法后的归一化定位误差相比于阻尼后的结果大约减小53%。 展开更多
关键词 法向量模型 极区惯性导航 全球适用性 综合校正
在线阅读 下载PDF
基于新的边缘保真项的有偏法向梯度向量流snakes模型
2
作者 翟鹏飞 石成英 《计算机应用》 CSCD 北大核心 2016年第A02期160-164,共5页
梯度向量流(GVF)有效解决了主动轮廓(snakes)模型初始化和凹陷区域收敛的问题,但由于其各向同性的扩散特性,使得对弱边缘和角点的捕获能力不足。因此,致力于寻求一种GVF各向异性扩散机制。通过将拉普拉斯算子进行正交分解,分析了GVF模... 梯度向量流(GVF)有效解决了主动轮廓(snakes)模型初始化和凹陷区域收敛的问题,但由于其各向同性的扩散特性,使得对弱边缘和角点的捕获能力不足。因此,致力于寻求一种GVF各向异性扩散机制。通过将拉普拉斯算子进行正交分解,分析了GVF模型的法向和切向扩散作用,发现(类似)角点处的GVF场存在明显的曲率收缩和切向退化,进一步揭示了角点和弱边缘丢失的原因。在此基础上,通过对法向GVF(NGVF)模型引入新的边缘保真项和有偏的权重系数,提出一种新的外力模型。最后,通过实验对该方法的分割准确性和计算效率进行了比较分析。实验结果表明,该方法在保持一定计算优势同时,能准确地捕获弱边缘和角点。 展开更多
关键词 梯度向量 曲率收缩 切向退化 角点和弱边缘保持 向梯度向量模型 SNAKES模型
在线阅读 下载PDF
基于词频统计的个性化信息过滤技术 被引量:12
3
作者 张国印 陈先 皮鹏 《哈尔滨工程大学学报》 EI CAS CSCD 2003年第1期63-67,共5页
对Internet信息进行过滤,筛选出与用户兴趣最相符的文档,是智能搜索引擎要解决的一个重要问题.本文在介绍搜索引擎基本原理的基础上,提出了一种文档学习和用户个性词典构建的实现方法,其中包括内码转换、分词、摘词处理、用户个性词典... 对Internet信息进行过滤,筛选出与用户兴趣最相符的文档,是智能搜索引擎要解决的一个重要问题.本文在介绍搜索引擎基本原理的基础上,提出了一种文档学习和用户个性词典构建的实现方法,其中包括内码转换、分词、摘词处理、用户个性词典的构建及词条权值调整等环节.然后提出了一种基于词频统计的个性化文档过滤算法,该算法对传统的向量空间模型法做了改进,使之能够更好地计算文档与用户个性词典之间的相关度,根据用户的兴趣爱好对文档进行相关度的过滤、排序,并给出了实验数据.实验结果表明该方法较好地解决了智能搜索引擎中Internet信息过滤、排序的问题. 展开更多
关键词 搜索引擎 文档过滤 向量空间模型 词频统计 个性词典
在线阅读 下载PDF
Optimization of support vector machine power load forecasting model based on data mining and Lyapunov exponents 被引量:7
4
作者 牛东晓 王永利 马小勇 《Journal of Central South University》 SCIE EI CAS 2010年第2期406-412,共7页
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput... According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting. 展开更多
关键词 power load forecasting support vector machine (SVM) Lyapunov exponent data mining embedding dimension feature classification
在线阅读 下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
5
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
在线阅读 下载PDF
Forecasting of wind velocity:An improved SVM algorithm combined with simulated annealing 被引量:2
6
作者 刘金朋 牛东晓 +1 位作者 张宏运 王官庆 《Journal of Central South University》 SCIE EI CAS 2013年第2期451-456,共6页
Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to th... Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to the analysis with support vector machine method, the drawback of determining the parameters only by experts' experience should be improved. After a detailed description of the methodology of SVM and simulated annealing, an improved algorithm was proposed for the automatic optimization of parameters using SVM method. An example has proved that the proposed method can efficiently select the parameters of the SVM method. And by optimizing the parameters, the forecasting accuracy of the max wind velocity increases by 34.45%, which indicates that the new SASVM model improves the forecasting accuracy. 展开更多
关键词 wind velocity forecasting improved algorithm simulated annealing support vector machine
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部